
Computación y Sistemas Vol.4 No.2 pp. 166 -177
@2000, CIC-IPN. ISSN 1405-5546 ImpresoenMéxico

Two Techniques for Improvement the Speedup ofNautilus

DSM

Mario D. Marino
Computing Engineering Departament -Polytechnic School of the University of Sao Paulo

Av. Prof. LucianoiGualberto 158, trav 3, Cidade Universitaria
Predio de Engenharia de Electricidade, Depto. Computacao

sala C2-24, CEP 05508-900
e-mail: mario@regulus.pcs.usp.br

Article receivedon Februarv 15. 2000: accevted on AuJ!Ust 23. 2000

Abstract 1 Introduction

Nautilus is a home-based, page-based, multi-threaded
and scope consistency-based DSM system. In this s-
tudy, two technique.9 for improtJe the speedup of Nau-
tilus DSM are intJestigated: write detection and page
aggregation. The write detection technique consists of
maintaining the pages writable only on the home n-
odes and only detecting writes on the cache copies in
a page-based DSM. A consequence, this technique gen-
erates a less number of page faults and page requests,
consequently better speedups can be achietJed. The page
aggregation technique consists of considering a larger
granularity unit than a page, in a page-based DSM sys-
tem. In order to hatJe a fair and homogeneous com-
parison, a demo tJersion of 1readMarks and JIAJIA
DSM were included in this study. The benchmarks e-
tJaluated in this study are EP (from NAS), SOR (from
Rice UnitJersity), LU and Water N-Squared (both from

SPLASH-2).

Keywords: distributed, shared, memory, DSM.

The evolution and the decrement of costs of intercon-
nection technologies and PCs have made the networks
of workstations (NOWs) the most used as a parallel
computer .Big projects such as Beowulf(Becker and
Merkey, 1997) can be mentioned to exemplify this.

The Distributed Shared Memory (DSM) paradig-
m(Li, 1996; Stum and Zhou, 1990), which has been
widely discussed for the last 9 years, is an abstraction
of shared memory which permits viewing of a network
of workstations as a shared memory parallel computer .

Some important DSMs, Munin(Carter, 1993),
Quarks(Carter et al., 1995; Swanson et al., 1998),
TreadMarks(Keleher, 1995), CVM(Keleher, 1996), JI-
AJIA(Eskicioglu, 1999; Hu et al., 1998a) and Nau-
tilus(Marino and Campos, 1999a; Marino and Campos,
1999b), are page-based DSM systems. Page-based so-
lutions have achieved good speedups for several bench-
marks, but there is still available place for improve-
ments.(mode et al., 1999)

In order to give a speedup improvement, in this s-
tudy two techniques are evaluated for Nautilus DSf:.If
System:

-write detection(Hu et al., August 1999a; Hu et al.,
August 1999b);

-page aggregation(Amza et al., 1999; Keleher, 1999;
Keleher,1998).

write detection is an essential mechanism in
multiple-writer protocols to identify writes to shared
pages. In order to implement multiple-writer proto-
col, software DSMs use virtual memory page faults to
detect writes to shared pages. Pages are protected at
the beginning of an interval to detect writes in it. The



M. o. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

this study, two grain sizes are used íor Nautilus: 4kB
and 8kB.

This study is an original contribution because the s-
tudy oí Amza(Amza et al., 1999) is applied with Tread-
Marks, a lazy release consistency homeless system, and
this technique until the present was not applied in a
home-based and scope consistency, multi-threaded and
íor Unix DSM, which are Nautilus's íeatures. In addi-
tion" this is the first study which combines both tech-
niques, write detection and page aggregation, applied
and evaluated on a DSM with Nautilus íeatures.

TreadMarks, a reíerence oí optimal speedups by the
scientific community, is included in the comparison in
order to have a reíerence parameter oí speedups. Un-
íortunately, the results írom write detection technique
app1ied to TreadMarks DSM will not be showed nor
compared here because the version (1.0.3) used in this
study is a demo version, thereíore, the source is not
available.

The speedup results írom write detection technique
app1ied to JIAJIA DSM (version 2.1) will not be
showed nor compared here because, this technique has
showed any meaningíul improvement in its speedup-
s, probably due some implementation problem oí this
technique with JIAJIA DSM.

The evaluation comparison íor write detection and
page aggregation is done by applying different bench-
marks: EP (írom NAS), LU (kernel írom SPLASH-
2)(Woo et al., 1995), SOR (írom Rice University) and
Water N-Squared (írom SPLASH-2). The environment
oí the comparison is an eight-PC's network intercon-
nected by a íast-Ethernet shared media. The operating
system used in each PC is Linux (2.x). Based on a com-
bination oí write detection and page aggregation, íour
combinations oí these techniques can be created. They
are: i) traditional virtual memory write detection with
4kB oí page size; ii) traditional virtual memory write
detection with 8kB oí page size; iii) write detection
with 4kB oí page size; iv) write detection with 8kB oí
page size.

In section 2 a brieí description oí Nautilus is given.
In section 3, JIAJIA is described. In section 4, Tread-
Marks is briefly described. In section 5, write detection
mechanism íor Nautilus is detailed. In section 6, page
aggregation technique is explained. In section 7, the
environment and the app1ications are defined. Section
8 presents the results and their analyses. Section 9
concludes this work.

write detection scheme used in Nautilus(Marino and
Campos, 1999a; Marino and Campos, 1999b) is based
on the scheme proposed by Hu(Hu et al., August 1999a;
Hu et al., August 1999b) for home-based DSMs as JI-
AJIA(Eskicioglu, 1999; Hu et al., 1998a). In home
nodes, a write to a shared page is detected and this
page will remain to be written by the home node until
it is written by another node. Thus, in this interval,
the page only is written by its home node and no write
detection is necessary, decreasing the number of page
faults and the overhead, thus improving its speedup.

In page-based DSM systems, shared memory access-
es are detected using virtual memory protection, thus
one page is the unit of access detection and can be
used as a unit of transfer. Depending on the memory
consistency model and the situation, also the diffsl are
used as an unit of transfer. For example, in homeless
lazy release consistency (LRC), such as TreadMarks, if
the node has a dirty page, diffs are fetched from several
nodes, when an inva1id page is accessed. On the oth-
er hand, in JIAJIA, pages are fetched from the home
nodes when a remote page fault occurs.

The unit of access detection and the unit of transfer
can be increased by using a multiple of the hardware
page size. In this way, if an aggregation of several pages
is done, false sharing is increased. Besides, aggregation
can reduce the number of messages exchanged. If a
processor accesses several pages successively, a single
page fault request and reply can be enough, instead
of multiple exchanges, which are usually required. A
secondary benefit is .the reduction of the number of
page-faults. On the other hand, false sharing can in-
crease the amount of data exchanged and the number
of messages(Amza et al., 1999).

One of the main goals of this paper is to evaluate
the write detection scheme for Nautilus and its influ-
ence on Nautilus's speedup. In order to have a refer-
ence parameter of speedups, two DSMs are included
in this study: TreadMarks(Keleher, 1995) and JIAJI-
A(Eskicioglu, 1999; Hu et al., 1998a). These two DSMs
are well-known by the scientific community as optimal
speedups in DSM area.

Other main goals of this paper is to evaluate the page
aggregation technique(Amza et al., 1999) in Nautilus
DSM system. It will be investigated what is the in-
fluence of different page sizes in Nautilus speedup. In

ldiffs: codification oí the modifications sutJered by a page
during a critical section



M. o. Marino. Two Techniques for Improvement the Speedup of Nautilus DSM

N autilus DSM2 DSM: threads to minimize the switch context; iv) no
use of SIGlO signals(which notice the arrival of a net-
work message); v) minimization of diffs creation; vi)
primitives compatible with TreadMarks, Quarks and
JIAJIA; vii) network of PCs and Linux 2.x; viii) UDP
protocols.

Nautilus is different from other DSMs in several
ways. First, its implementation is multi-threaded, thus
it minimizes the context switches overheads, and in ad-
dition, does not use SIGlO signals in its implementa-
tion. Second, as JIAJIA does, Nautilus manages the
shared memory using a home-based scheme, but with a
directory structure of all pages instead of only a struc-
ture of the relevant pages (cached), used by JIAJIA.
Third, a different memory organization from JIAJIA.

To improve the speedup of the applications submit-
ted, Nautilus uses two techniques: i)multi-threaded
implementation; ii) diffs of pages that were written by
the owner are not created.

The multi-threaded implementation of Nautilus per-
mits: 1) minimization of context switch; 2) no use of
SIGlO signals.

The major part of all DSM systems created until
today implemented on top of an Unix platform uses
SIGlO signals to activate a handler to take care of
the arrival of messages which come from the network.
Some examples ofDSMs that use the SIGlO signal are
TreadMarks and JIAJIA. One of the threads remains
blocked trying to read messages from the net. While
blocked, it remains asleep, thus non consuming CPU .
This technique decreases the overhead of the DSM and
allows to give as much CPU time as possible to the user
program. Thus, Nautilus is the first scope consistency
DSM system of the second generation which does not
use the SIGlO signal in its implementation. The use of
a multi-threaded implementation permits to eliminate
this overhead to take SIGlO signals and activate its
respective handler, in all arrivals of messages.

2.1 Lock-based Coherence protocol

Nautilus follows the lock-based protocol proposed by
JIAJIA(Hu et al, 1998b) , because of its simplicity, thus
minimizing the overheads: the pages can be in one of
three states: Invalid(INV), Read-Only (RO) and Read-
Write(RW). I'Initially all pages are in RO state at all
home nodes. Ordinary read and write accesses to a
RW page or read access to a RO page, or acquire and
release on an INV or RO page do not cause any transi-

The main function of the new software DSM Nautilus
is to develop a DSM with a simple consistency mem-
ory model, in order to provide good speedups, and al-
so another one with a simpler user interface, totally
compatible with TreadMarks and JIAJIA. This idea
is very similar to the ideas utilized by JIAJIA, men-
tioned in the studies of Hu(Hu et al., 1998a) and Es-
kicioglu(Eskicioglu, 1999), but Nautilus makes use of
some other techniques, which distinguishes it from JI-
AJIA. These techniques will be mentioned below. In
order to be portable, it was developed as a runtime
library like TreadMarks, CVM and JIAJIA, because
there is no need to change the operating system ker-
nel(Carter, 1993).

Nautilus is a page-based DSM, as TreadMarks and
JIAJIA. In this scheme, pages are replicated through
the several nodes of the net, allowing multiple read-
s and writes(Stum and Zhou, 1990), thus improving
speedups. By adopting the multiple writer protocols
proposed by Carter(Carter, 1993), false sharing is re-
duced and good speedups can be achieved. The mech-
anism of coherence adopted is write invalidation(Stum
and Zhou, 1990), because several studies (Carter et
al., 1995; Eskicioglu, 1999; Iftode et al., 1999; Kele-
her, 1995) show that this type of mechanism provides
better speedups for general applications. Nautilus, as
JIAJIA does, uses scope consistency model, which is
implemented through a locked-based protocol(Hu et al,

1998b).
Nautilus is the first multi-threaded DSM system im-

plemented on top of a free Unix platform that uses the
scope consistency model because:

l)there are versions of TreadMarks implemented
with threads, but it does not use the scope consistency
memory model;

2)JIAJIA is a DSM system based on scope consis-
tency, but it is not implemented using threads.

3)CVM(Keleher, 1996) is a multi-threaded DSM sys-
tem, but it uses lazy release consistency and at the
moment, it does not have a Linux based version.

4)Brazos(Speight and Bennet, 1997) is a multi-
threaded DSM and uses the scope consistency, but it
is implemented on a Windows NT platform.

Let's summarize Nautilus features: i) scope consis-
tency only sending consistency messages to the owner
of the pages and invalidating pages in the acquire prim-
itive; ii) multiple writer protocols; iii) multi-threaded



M. D. Marino: Two Techniques for Improvement the Speedup of Nautilus DSM

In Nautilus, the owner nodes of the pages do not
need to send the diffs to other nodes, according to the
scope consistency model. So, diffs of pages written
by the owner are not created, which is more efficient
than the lazy diff creation of TreadMarks. rrhe imple-
mentation of the state diagram of Figure 1 is done in
Unix with the mprotect() primitive, where pages can
be in RO, INV or RW states, thus their states can be
changed easily.

rd.wtd
reL(wlnl,diff),acq ~

RO )..) Id, acq, rel

wt (lwin)

\

\

initial state

Not.S

rd, wt: r..d, wril.

acq. rel: acquir.. r.l acqinv: invalid.l. Ih. pag. on acquire

g.lp. g.t th. p.g. from ils hom.

wlnl: ",nd wril.-nolic.s lo Itt.lock

diffs: ",nd pag. diffs 10 home(s)

Iwin: create .Iwin ofltt. page

2.2 Data Distribution and Consistency
Related Informations

Figure 1: JIAJIA Coherence Protocol (Bu et al, 1998b )
Nautilus distributes its shared pages across all nodes
and each shared pages haB a home node. When home
nodes access their home pages, no page faults occurs.
When remote pages are accessed, page faults occur ,
and these pages are fetched from their home node and
cached locally. Instead of JIAJIA, Nautilus does not
have a replacing mechanism of cached pages, since in
.Linux, they are replaced aB memory size increaBes.

Nautilus uses the scope consistency memory mod-
el(Iftode et al., 1996), where the coherence of cached
pages is maintained through write-notices2 kept on the
lock (lock-baBed). As a result from the multiple-writer
protocols technique application, diffs are sent to their
home nodes. The implementation of Nautilus barri-
er mechanism is very similar to JIAJIA, because it is
believed that with less time consuming and a lower
number of messages, it becomes more efficient. Now,
the acquire/releaBe mechanism of Nautilus is briefly
described. In order to signal the end of the critical
section, a releaBe message is sent to the manager. Tak-
ing in advantage of the fact of sending this message,
the write notices are piggy-backed on the releaBe mes-
sage. On the acquire, the processor which is doing it
sends a lock request to the manager. When granting
the lock, the manager piggy-backs write-notices aBSo-
ciated with this lock on the grant message. At the
acquire, the processor, which is doing it, invalidates all
cached pages that are notified aB obsolete by the re-
ceived write-notices. On a barrier, all write notices of
all locks are cleared.

tion. Like the shared pages, each lock has a home node.
On a release operation, the node generate diJJs for all
modified pages and sends them to their respective home-
s eagerly. Also, the processor sends a release request to
the home node of the lock, along with the write-notices
(list of a modified pages) for the associated critical sec-
tion. Similarly, an acquiring node .sends a request to
the owner of the lock and waits until it receives a grant
message for the lock. Multiple acquire requests for a
lock are queued at the locks home processor. When the
lock becomes (or is) available, a lock grant message is
sent to the first node in the queue, piggybacked with the
applicable write-notices. After receiving the lock grant
message, the acquiring node invalidates the pages list-
ed in the write-notices and continues with its normal
operation(Hu et al, 1998b)."

In summary, the home nodes of the pages always
contain a valid page, and the diffs corresponding to
the remote cached copies of the pages are sent to the
home nodes. A list with the pages to be invalidated in
the node is attached to the acquire lock message.

JIAJIA(Eskicioglu, 1999; Hu et al., 1998a) only con-
tains information of the relevant pages, the cached
copies of the pages, because it argues that it reduces
the space overhead of the system. On the other hand,
Nautilus maintains a local directory structure for al-
1 pages, since it does not occupy a relevant space and
does not increase the over head of the system. Inversely,
this helps increasing the speedup of the system.

2write-notices: indication of which pages were modified dur-
ing the critical section


















