
Continuous Testing and Solutions for Testing Problems in Continuous
Delivery: A Systematic Literature Review

Maximiliano A. Mascheroni1,2, Emanuel Irrazábal1

1 Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y
Agrimensura, Departamento de Informática,

Argentina

2 Universidad Nacional de la Plata, Facultad de Informática,
Argentina

{mascheroni, eirrazabal}@exa.unne.edu.ar

Abstract. Continuous Delivery is a software

development discipline where quality software is built in
a way that it can be released into production at any time.
However, even though instructions on how to implement
it can be found in the literature, it has been challenging
to put it into practice. Testing is one of these biggest
challenges. On the one hand, there are several
Continuous Delivery testing problems related to
Continuous Delivery reported in the literature. On the
other hand, some sources state that Continuous Testing
is the missing element in Continuous Delivery. In this
paper, we present a systematic literature review. We
look at proposals, techniques, approaches, methods,
frameworks, tools and solutions for testing problems. We
also attempt to validate whether Continuous Testing is
the missing component of Continuous Delivery by
analyzing the different definitions of it and the testing
stages and levels in Continuous Delivery. Finally, we
look for open issues in Continuous Testing. We have
found 56 articles and the results indicate that Continuous
Testing is straight related to Continuous Delivery. We
also describe how solutions have been proposed to face
the testing problems. Lastly, we show that there are still
open issues to solve.

Keywords. Continuous delivery, continuous testing,

systematic literature review, testing, software.

1 Introduction

Continuous Delivery (CD) is a software
development discipline where the software is built
in a way that it can be released into production at
any time [1]. In today’s agile age, CD is an
increasingly critical concept. This discipline

supports agile practices and cuts the time-to-
release of websites and apps from several weeks
to just a few hours. However, according to Prusak
[2], it could be argued that “the industry has not yet
closed the circle when it comes to realizing a full
CD process”. Even though the literature contains
instructions on how to adopt CD, its adoption has
been challenging in practice [3].

The first part of a CD process is Continuous
Integration (CI) [4]. CI is a software development
practice where developers integrate code
frequently verified by an automated build (including
test), to detect defects as quickly as possible [5].
The second part of a CD process is Continuous
Deployment (CDP) [4]. CDP is the ability to deliver
software more frequently to customers and benefit
from frequent customer feedback [6]. However,
according to non-academic articles, there’s a
missing part: Continuous Testing (CT) [2]. Two
sources [7, 8], define CT as the process of
executing automated tests as part of the software
delivery pipeline to obtain immediate feedback on
the business risks associated with a software
release candidate.

Testing is considered by Humble and Farley [4]
as the key factor for getting CD, and they present
a Deployment Pipeline (DP) as a CD model
composed with different testing stages. However,
while instructions on how to adopt these stages are
given by these authors, some organizations have
not adopted this practice at large yet [9] and some
of them have found it challenging [10, 11, 12, 13,
14, 15, 16].

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

ISSN 2007-9737

This raises the question whether there is a lack
of best practices or whether the implementation of
the test stages is highly problematic and the
benefits are lower than the mentioned by the
proponents of CD. The reported testing problems
are described in Table 1.

In this systematic literature review (SLR), we
look at proposals, techniques, approaches, tools
and solutions for the various mentioned problems.
We attempt to create a synthesized view of the
literature considering these topics.

Furthermore, our mission is not just to identify
new tools or techniques, but also to understand
their relationship with CT. We attempt to validate
whether CT is really the missing component of CD.
We also look for different testing levels or stages in
CD. We want to dig into CT, looking for the different
parts of it, its limitation, boundaries and whether
open issues exist or not.

We believe this SLR can provide an important
contribution for the field, because while different
testing CD approaches have been successfully
implemented in some companies such as
Facebook [31] or Atlassian [32], it is not known how
generally applicable they are. On the other hand,
the CT approach may vary and follow diverse
pathways to ensure products are delivered free of
defects. Thus, in addition, for research
communities, our attempt offers a good starting
point for future research topics in CT by detecting
open issues related to it.

Previous SLRs have focused on CD topics such
as: characteristics [15, 33] benefits [33], [34],
technical implementations [35], enablers [15, 36],
problems and causes [3, 15, 33] and solutions [3].
Thus, there have been only three of these studies
that are related to testing in CD. The first one of
them [3], studied problems of the adoption of CD
and it reported some of the aforementioned testing
problems with partial solutions.

However, the authors mentioned that they are
“tricky” solutions and that the biggest problem is
time-consuming testing. The second paper [15],
studied how the rapid releases have repercussions
on software quality, but it does not analyze the
possible solutions. The last one of them [33],
considers CT as a key factor in CDP. However, it
only describes challenges and needs.

Therefore, to our knowledge, this is the first
SLR which studies CT approaches, stages,
solutions, tools and techniques.

Apart from this introductory section, this paper
is structured as follows. We introduce our research
goals and questions and describe our methodology
in Section 2. Next, we introduce the results, which
we further discuss in Section 3. Finally, we present
our conclusions and ideas for future work in
Section 4.

2 Methodology

In this section, the research goals and questions
are presented. We also describe the research
method used in this SLR, the filtering and data
extraction strategy.

2.1 Research Goal and Questions

The goal of this paper is to look for solutions that
have been reported to face the different mentioned
challenges. It also has been found in non-
academic articles that CT is the missing part of CD.
We believe that different CT approaches exist and
they might be solutions for those challenges. We
also attempt to investigate the meanings of CT for
the industry and the different stages or testing
levels that compose it. Thus, we propose the
following research questions:

– RQ1. Is there a valid and accepted definition
for CT?

– RQ2. What types of testing or testing levels
have been implemented for continuous
development environments?

– RQ3. What solutions have been reported to
solve testing problems in CD?

– RQ4. Are there open issues related to CT?

With RQ1, it is intended to establish what
exactly CT is and whether it has a formal and
accepted definition for both academic and
empirical studies. In the same context, with RQ2 it
is intended to set the stages or testing levels for
CD. The aim of RQ3 is to look for any kind of
solution, such as approaches, tools, techniques or
best practices that can be used to face the testing
problems mentioned in Section 1.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1010

ISSN 2007-9737

Finally, the aim of RQ4 is to compile a list of
open issues related to CT (if they exist).

We answer the research questions using a
SLR. Cruzes and Dybå define a SLR as “a
rigorous, systematic, and transparent method to
identify, appraise, and synthesize all available
research relevant to a particular research question,
topic area, or phenomenon of interest, which may
represent the best available evidence on a subject”
[37]. A SLR may serve as a central link between
evidence and decision making, by providing the
decision-maker with available evidence. The
importance of SLR for software engineering has
been deeply discussed by a reasonable amount of
studies [37, 38, 39, 40]. Kitchenham and Charters
[41] describe a set of reasons for performing a
SLR, as follows:

– To summarize the existing evidence
concerning a treatment or technology

– To identify any gaps in current research in
order to suggest areas for further
investigation.

– To provide a framework/background in order
to appropriately position new research
activities.

In this study, we followed Kitchenham and
Charter’s guidelines [41] for performing SLRs in
software engineering, as seen in Fig. 1.

2.2 Planning and Search Strategy

After the research questions have been set, the
next step is to define the search criteria. In this
study, we followed the phases suggested by
Kitchenham and Charters [41]. First of all, a
preliminary search was performed in order to know
other researches in CD. From this, synonyms and
alternatives to CD were identified.

Table 1. Testing problems at adopting CD

Ref Problem Description

[16, 17, 18] Time-consuming
testing

Testing is a process that takes too much time.

[16, 19, 20,
21, 22]

Automated flaky
Tests

One of the main characteristics of CD is reliability, but it is difficult to get
highly reliable tests when they fail randomly.

[23, 24, 25,
26]

User Interface Testing
problems

The user interface (UI) is the part of an application that changes most
frequently and it can drive to flaky automated tests.

[9, 20] Ambiguous test
results

Test results are not communicated to developers properly, indicating
whether the tests have passed or not. There are also some reports where
it is not clear what exactly has broken a build.

[26, 27] Rich Internet
Applications and
modern web
applications.

Modern web applications utilize new technologies like Flash, Ajax, Angular
or they perform advanced calculations in the client side before carrying out
a new page request. It is hard to automate test cases for these types of
applications.

[28] Big Data Testing Big data is the process of using large datasets that cannot be processed
using traditional techniques. Testing these datasets is a new challenge that
involves various techniques and frameworks.

[29] Data Testing Data is very important for different types of systems and errors in these
systems are costly. While software testing has received highly attention,
data testing has been poorly considered.

[30] Mobile Testing Automated mobile testing brings with it a lot of challenges regarding the
testing process in different type of devices.

[17, 21] Continuous Testing of
Non-functional
Requirements

While unit, integration and functional tests have been extensively
discussed in the literature and widely practiced in CD, testing non-
functional requirements has been overlooked.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1011

ISSN 2007-9737

According to [3], “CD is a fairly new topic” and
there is not much mention in the literature
concerning CD in the context of testing so we
decided to include CI and CDP as they are claimed
to be prerequisites and extensions of CD [4]. Thus,
the obtained search query was:

 (“Continuous Development” OR “Continuous
Integration” OR “Continuous Deployment” OR

“Continuous Delivery” OR “Rapid Releases”) AND
(Testing OR Test) OR “Continuous Testing”) AND

Software

The first part of the query looks for studies in
the field of CD, its synonyms (continuous
development and rapid releases) and the other
terms included (CI and CDP). The second part
(CT) attempts to identify, appraise and synthesize
all available literature relevant to CT. Finally, the
“software” string was included in order to exclude
articles that are not related to software
engineering; the same approach was used in
earlier SLRs [3, 35].

The search string was applied to titles,
abstracts and keywords and it was executed on
February 2017 and again on June 2017 in different
data sources.

The second search was performed because
there had been recent new publications in the area.

The selection of the data sources is because they
have been used in previous SLRs on Software
Engineering [3, 39, 42] and they contain
publications that are considered relevant to the
area of interest. Using the mentioned search term,
a lot of results were obtained, but many of them
were considered as irrelevant to the purpose of this
study. Table 2 shows the search engines used as
data sources and the summary of the
obtained results.

2.3 Filtering Strategy

The first search provided a total of 655 results as
seen in Table 2. Those results were filtered using
different inclusion and exclusion criteria. For the
first discards, we used the following
exclusion criterion:

1. Exclusion Criterion: duplicated studies are
discarded.

From the 655 articles, we removed the duplicate
studies, which left us with 439 articles.

Next, we studied the abstract of the remaining
papers, and applied the following inclusion and
exclusion criteria:

Fig. 1. Kitchenham’s guidelines for performing SLRs in software engineering

Table 2. Search Engines used as data sources and obtained results

Engine Total
Included after discards Second

Search
Included

by repetition by abstract by irrelevance

Scopus 272 243 172 26 3 29

IEEE Xplore 182 96 58 11 2 13

ISI Web of Science 81 33 22 5 1 6

ACM Digital Library 71 35 29 4 1 5

Science Direct 34 19 8 2 0 2

Research at Google 15 13 6 0 1 1

Total 655 439 295 48 8 56

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1012

ISSN 2007-9737

2. Inclusion Criterion: articles that propose tools,
frameworks or any kind of solution for a
continuous software development practice
(CD, CDP, CI, and CT) are included.

3. Inclusion Criterion: articles that study CT
are included.

4. Exclusion Criterion: if a continuous software
development practice or a CT topic is not
mentioned in the abstract, then it is discarded.

A total of 295 articles passed the criteria. Next,
full-text versions of the studies were acquired.
Finally, we applied the following exclusion criteria:

5. Exclusion criterion: articles that do not answer
any of the research questions are discarded.

After the five criteria were applied, we got a total
of 48 articles. As this filtering process was applied
during the months of February, March, April, May

Table 3. Extraction form

Study Data Description Relevant RQ

1 Study identifier Unique id for the study (S#). Study overview

2 Authors, year, title Study overview

3 Article source
Scopus, IEEE Xplore, ISI Web of Science, ACM Digital
Library, Science Direct, Research at Google.

Study overview

4 Type of article Journal, conference, symposium, workshop, book chapter. Study overview

5 Application context Industrial, academic, both. Study overview

6 Research Type
Validation research, evaluation research, solution
proposal, philosophical paper, experience paper.

Study overview

7 Evaluation method
Controlled experiment, case study, survey, ethnography,
action research, systematic literature review, not
applicable.

Study overview

8 Continuous Testing Is there a valid and accepted definition for CT? RQ1

9 Testing Stages What stages or levels exist for CT? RQ2

10
Solutions and Tools for
Testing Problems

What solutions have been reported to solve testing
problems in CD?

RQ3

11
Open issues in Continuous
Testing

Are there CT related open issues? RQ4

Table 4. Study quality assessment criteria

Question

Q1 Is there a clear statement of the goals of the research?

Q2 Is the proposed technique clearly described?

Q3 Is there an adequate description of the context in which the research was carried out?

Q4 Is the sample representative of the population to which the results will generalize?

Q5 Was the data analysis sufficiently rigorous?

Q6 Is there a discussion about the results of the study?

Q7 Are the limitations of this study explicitly discussed?

Q8 Are the lessons learned interesting and relevant for practitioners?

Q9 Is there sufficient discussion of related work?

Q10 How clear are the assumptions and hypotheses that have shaped the opinions described?

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1013

ISSN 2007-9737

and June, we repeated the process for
those months.

Thus, new papers that were published within
that period were included for the SLR. Finally, a
total of 56 papers were included.

2.4 Data Extraction

We prepared forms to accurately record any
information needed to answer the research
questions. We extracted the data described in
Table 3 from each of the 56 studies included in this
systematic review. The extraction form was used
in other SLR of software engineering [43].

3 Results and Analysis

This section describes the results of our study. We
discuss the answers of each research question
separately.

Our selection process resulted in 56 studies
that met the inclusion criteria and we extracted the
data following the extraction form described in
Table 3. The articles are listed in Table A.1.
(Appendix A).

Before presenting the results and analysis for
each research question, we depict the quality
assessment results and provide an overview of the
general characteristics of the included articles.

3.1 Quality Assessment Results

The quality assessment is a key factor to increase
the reliability of the conclusions. It has helped to
ascertain the credibility and coherent synthesis of
results [44].

We present the results of the quality
assessment of the selected studies in Table B.1.
(Appendix B), according to the assessment
questions described in Table 4. These 10
questions were proposed by [44] and they provided
a measure of the extent to which we could be
confident that a particular study can make a
valuable contribution to our review. The results
show that the overall quality of the included studies
is reasonable since the mean of quality was 76%.

3.2 Overview of the Studies

The selected studies were published between
2001 and 2017. In Fig. 2, the number of studies are
presented by year of publication. An increasing
number of publications can be noticed in the
context of this review from 2015.

After analyzing this temporal view of the
articles, we can conclude that the number of
studies about CT and testing in CD is minimal
throughout the years. Although the apparent
increasing number of the studies on this topic from
2013, this result corroborates with the statement
that testing practices in continuous software
development have been somewhat neglected.

We used three categories for the application
context of the studies: industrial (empirical),
academic, and both. On the one hand, the studies
that were published by authors affiliated to a
University are considered as academic studies. On
the other hand, the articles that explicitly state that
they were performed in a real company or from an
author’s work in the industry, they are considered
as industrial studies. If academic studies have
experimentation or case studies in real working
environments, we classified them as academic &
industrial studies (both). However, articles that
have experimentation in laboratories or non-real
company environments are considered just as
academic studies.

The results show that 16 studies (29%) belong
to the academic context. 13 studies (23%) were
conducted in industrial settings and 27 studies
(48%) belong to the academic & industrial studies
category (see Fig. 3). Most of the studies were
applied in the industry (71%). From those articles
that were applied in the industrial context, most of
them are also academic studies.

This may indicate that practices that are
emerging from universities and researchers are
attempting to solve challenges faced by the
industries. Furthermore, it also may point out that
there is some approximation between industries
and universities.

We categorized the evaluation method based
on the following categories: controlled experiment,
case study, survey, ethnography and action
research. These categories for evaluation method
were proposed by Easterbrook et al. [45]. In
addition, we adopted two extra categories:

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1014

ISSN 2007-9737

‘systematic literature review’ and ‘not applicable’.
The first category is used to classify studies that
collect and critically analyze multiple research
studies or papers in order to get conclusions. The
second category refers to the articles that do not
contain any kind of evaluation method in the study.
Results of this classification can be seen in Fig. 3.

Most of the studies were evaluated empirically:
controlled experiment (38%) and action research

methods (11%). 14 of the articles were case
studies (25%). On the other hand, there were 3
surveys (5%), only 1 SLR (2%), and 11 studies
(20%) did not mention any kind of evaluation
method or they are just opinion papers.
Ethnography studies were not found.

Finally, the selected studies were categorized
according to the applied research types defined by
Wieringa et al [46], as can be seen in Fig. 4.

The most adopted research type is Solution
Proposal with 26 studies (46%) followed by
Experience Papers with 15 studies (27%). This is
very related to our research questions because we
are looking for new approaches, solutions, tools
and techniques. On the other hand, Validation
Research type has 6 studies (11%) and Evaluation
Research has 5 studies (9%). Finally, 4 of the
selected studies (7%) belong to Philosophical
Papers category of research types.

In the next sections, we present and analyze
the results of each research question. Discussions
about the obtained results are presented at the end
of each topic analysis.

3.3 RQ1. Is There a Valid and Accepted
Definition for Continuous Testing?

The term was mentioned for the first time by Smith
in 2000 [47], as a part of the Test-Driven
Development (TDD), process at running unit tests.
It was a testing process that has to be applied
during the development and execution stages as
automated regression testing 24 hours a day.
However, the results obtained from the selected
papers show that this concept has been evolving
during recent years.

In 2003, Saff and Ernst in S42 introduced the
concept of CT as “a means to reduce the time
wasted for running unit test”. It used real-time
integration with the development environment to
asynchronously run tests that are applied to the
last version of the code, getting efficiency and
safety by combining asynchronous testing with
synchronous testing. Later, in 2004 and 2005
(S17), the same authors (Saff and Ernst) proposed
an eclipse IDE plugin which used excess cycles on
a developer’s workstation to continuously run
regression tests in the background while the
developer edited code. These tests were
composed by automated integration and unit tests.

Fig. 2. Temporal view of the studies

Fig. 3. Application context of analyzed articles (a), and
evaluation method (b)

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1015

ISSN 2007-9737

They named this process as “Continuous Testing”.
It provided rapid feedback to developers regarding
errors that they have inadvertently introduced. This
CT definition is the base of other CT definitions and
it is also used for other authors nowadays. For
example, in 2016, S25 uses the same term to refer
“a process that provides fast feedback about the
quality of the code by running regression tests in
the background automatically while the developer
is changing the source code”.

In 2010, S29 takes the same CT definition from
S42 and S17: “running test cases all the time
during development process to ensure the quality
of the software system that is built”. However, they
mentioned that CT cannot be completed before
software goes to users. Thus, the authors in S29
presented a new concept: life-long total continuous

testing. It includes not only the unit testing stage,
but also the following testing stages: specification
testing, design testing, coding testing, validation
testing, functional testing, non-functional testing,
installation testing, operation testing, support
testing, and maintenance testing.

In 2011, using the CT process proposed by
Smith (2000), S6 presents CT for cloud computing.
The authors state that CT can be used to test SaaS
applications. As applications may be composed
from services, CT can be applied before and after
application and service composition, and even
during its execution like a monitoring service.
Later, in 2013, for Google (S30), CT means
“running any kind of test as soon as possible, and
detecting any type of issues related to a change
made by a developer”.

Between 2015 and 2016, several new CT
approaches appeared: S10, S13, S14, S53 and
S55. In S10, CT means “using automated
approaches to significantly improve the speed of
testing by taking a shift-left approach, which
integrates the quality assurance and development
phases”. This approach may include automated
testing workflows that can be combined with
metrics in order to provide a clear picture of the
quality of the software being delivered.

Leveraging a CT approach provides project
teams with feedback on the quality of the software
that they are building. It also allows them to test
earlier and with greater coverage by removing
testing bottlenecks such as access to shared
testing environments and having to wait for the UI
to stabilize. According to S10, “CT relies on
automating deployment and testing processes as
much as possible and ensuring that every
component of the application can be tested as
soon as it is developed”.

For S14, CT involves testing immediately at
integrating the code changes into the main trunk,
and running regression test suites at any time to
verify that those changes do not break existing
functionalities. For S53, CT means to automate
every single test case. Manual testing processes
must be evaluated for possibilities of automation.
Software delivery processes should be able to
execute the test suite on every software build
without any user intervention thereby moving
towards the last goal of being able to deliver a
quality release quickly. This whole principle of CT

Fig. 4. Research types of the selected studies

Fig. 5. Evolution of automated testing during the
years

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1016

ISSN 2007-9737

presented in S53 not only moves the testing
process early in the cycle but it also allows the tests
to be carried out on production-like systems
(complemented by CDP).

S13 presents CT for mobile development as
“the process of running all of the tests continuously
(every few hours) on both the Master and the
Release branch”. The most important of these
tests are the full build tests, integration regression
tests, and performance tests in a mobile device
lab.

Finally, in S55, the authors cited a part from a
CI book [48], where the authors state that “in a
continuous integration setting, which most of the
organizations either adopted it or are trying to
adopt it, testing should be run continuously”. This
CT approach includes unit tests, integration tests,
functional tests, non-functional tests, and
acceptance tests.

Discussion of RQ1

The results show that the concept of CT has been
evolving during the years. At the beginning, it was
only applied to the execution of unit tests
continuously, especially in the developer’s
workstation while he/she codes in the background.
Now, it does not apply only to unit testing, but also
to every type of test case that can be automated.
This may indicate that the inclusion of different
testing stages during the years in CT definitions is
related to the emergence of automation tools that
allow teams to automate different types of test
cases (see Fig. 5).

However, most of these articles based their CT
approaches on Saff and Ernst definition (S42) and
some of them use the definition proposed by Smith
[47]. Thus, it can be concluded that CT is the
process of running any type of automated test case
as quickly as possible in order to provide rapid
feedback to the developer and detecting critical
issues before going to production.

3.4 RQ2. What Types of Testing or Testing
Levels Have Been Implemented for
Continuous Development Environments?

The International Software Testing Qualifications
Board [49] proposes 4 testing levels: unit testing,
integration testing, system testing and acceptance

testing. At the same time, these testing levels have
testing sub-levels.

These levels are used in CD through the
implementation of specific testing stages that
include different types of testing.

The earlier first stage that appears in the results
of the SLR is peer review. It was proposed as a
quality assurance stage in CD by S2. It’s a manual
stage that can be supported by tools. For example,
S2 uses Gerrit for peer reviewing. Similarly, S13
uses code review as a requirement before any
code can be pushed to the mainline trunk.

The second stage is build and unit testing. This
testing stage has been applied by most of the
studies included in this SLR (S2, S6, S9, S11, S12,
S13, S14, S22, S32, S39, and S47). S22 has
extended this stage by using automated mutation
testing. Mutation testing is a process by which
existing code is modified in specific ways (e.g.,
reversing a conditional test from equals to not
equals, or flipping a true value to false) and then
the unit tests are run again. If the changed code, or
mutation, does not cause a test to fail, then it
survives. Tools reported for unit testing are: JUnit
(S2, S13), Robolectric (S13), NUnit (S9), Xcode
(S13), Microsoft MSTest (S9), Android Studio
(S13), XCTest (S13). Tools used for mutation
testing are: PIT Mutation Testing (S22), Ninja
Turtles (S22), and Humbug (S22). S9, S11, S12,
S22 and S47 have also added to this level, a code
coverage stage which is ran at the same time with
unit tests. Unit test code coverage is measured
using tools such as JaCoCo (S22), CodePlex
Stylecop (S9), Coverage.py (S22), or NCover
(S22). The third stage is static code analysis or
simply static analysis. It was implemented by S2,
S12, S13 and S47.

It is another automated stage that examines the
code without running it, detecting coding style
issues, high complexity, duplicated code blocks,
confusing coding practices, lack of documentation,
etc. S22 states that “static analysis allows manual
code reviews to concentrate on important design
and implementation issues, rather than enforcing
stylistic coding standards”. An alternative name to
this stage is Code Verification (S47). The most
implemented tool for this stage is SonarQube (S2,
S12, S13, and S22).

The fourth stage is integration testing. It is an
automated testing stage implemented by S2, S6,

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1017

ISSN 2007-9737

S13, S14, S32 and S47. In this stage, individual
software modules are combined and tested as a
group. JUnit (S2) and TestNG (S2) have been
reported as tools for supporting this stage.

The fifth stage is called by some authors as
Installation or Deployment testing. It was
implemented by S14 and S22. The goal of this
stage is to verify whether software installation or
deployment to a specific environment was made
properly. It is a very short verification stage and the
involved tools are the same as those that are used
for unit or integration testing.

The sixth stage is functional testing. The goal of
this stage is to verify that the functionalities of the
system work as expected. This stage has been
implemented using automated testing tools by S2,
S9, S11, S12, S13, S14, S22, S39, S43 and S47.
However, some of the studies (S9 and S13) were
not able to automate all of the functional test cases.
Thus, they use both manual and automated testing
for this level. The stage has been named also as
conformance testing (S13 and S43), feature
verification (S14), system functional testing (S14),
and functional acceptance testing (S9, S11, and
S22). S22 states that it’s also important to add
negative testing to this stage. The negative testing
ensures that the system can handle invalid inputs
or unexpected user behaviors. Furthermore, it has
been proposed other testing sub-stages as part of
the functional testing stage, like snapshot testing
(S13). The goal of snapshot testing is to generate
screenshots of the application, which are then
compared, pixel by pixel, to previous snapshot
versions. Testing tools used at this level are: JUnit
(S2), NUnit (S9), MbUnit (S9), XUnit (S9), or
Borland Sil4Net (S9).

The seventh stage is security testing. It is used
to verify that security requirements such as
confidentiality, integrity, authentication,
authorization, availability and non-repudiation are
met. This stage was implemented by S9 and S39.

The eighth stage is performance, load and
stress testing, and it was implemented by S2, S9,
S11 S13, S14, S39, S43 and S47. This stage is
performed to determine a system's behavior under
both normal and anticipated peak load conditions.
The tools used for this stage are Jmeter (S2) and
Borland Silk Performer (S9). An additional stage at
this level is capacity testing. Capacity testing is
targeted at testing whether the application can
handle the amount of traffic that should handle. It
was implemented by S9, S39 and S13. We will
name this stage as CPLS testing (capacity,
performance, load and stress).

Finally, the last stage is exploratory manual
testing. Manual testing becomes more important
since automated tests will cover the simple
aspects, leaving the more obscure problems
undiscovered. This stage was implemented by S9,
S11 and S22.

Discussion of RQ2

These stages have been implemented for different
types of platforms: web applications, mobile
applications, cloud computing, web services, big
data applications, etc. The testing stages
implemented in the studies are shown in Fig. 6.

Unit testing, functional testing and CPLS testing
are the most used stages in continuous software
development environments.

Table 5. Solutions for time-consuming unit testing

Solution
Articles that have implemented the

solution
Degree to which the solution

solves the problem

Test case generation S1, S15 Partial

Test case prioritization S6 Partial

Running unit tests in the
background at coding

S16, S17 Partial

Running groups of unit tests in
the background at coding

S25 Total

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1018

ISSN 2007-9737

3.5 RQ3. What Solutions Have Been Reported
to Solve Testing Problems in CD?

Different solutions have been proposed to solve
the testing problems presented in Table 1. We
analyze those solutions for each problem
separately.

It is very important to highlight that more
solutions can be found in the literature, but we just
describe those which are related to continuous
software development environments.

3.5.1 RQ3-P1. Time-Consuming Testing

In any continuous software development
environment, changes are introduced more
frequently to the repository, so it is necessary to
run regressions as quickly as possible. However,
the execution of a huge suite of test cases takes
too much time, even if the test cases are
automated. Furthermore, this problem is not tied
up to one single testing level, but to all of the
different mentioned testing stages. Thus, we
analyze the different solutions by grouping them
according to the testing levels.

Unit testing. S1 and S6 have proposed the use
of automatic test case generation techniques to
face this problem. By having a complete
automated unit test case generation system, it is
possible to reduce the cost of software testing and
it also facilitates the test case writing. S1 presents
an automatic test case generation mechanism for
javascript programs. One of the main problems of

this tool is that it is not applicable for object-
oriented languages. On the other hand, S15
proposes an automatic test case generation
system for object-oriented languages using
search-based testing and a mechanism called
continuous test generation as a synergy of
automated test generation with CI. For this
purpose, it is presented a tool called EvoSuite.
However, the authors describe that it is not
applicable for inner classes and generic types.

S6 presents a unit test prioritization technique,
where test cases can be ranked to help the users
to select the most potent test cases to run first and
often. However, the developer has to make the
prioritization manually, and that is a time-
consuming task.

S16 and S17 propose a mechanism that
consists in running unit tests in the background
while the developer is coding. S17 presents an
eclipse plugin for Java projects that automatically
compiles the code when the user saves a buffer,
and then it indicates compilation errors in the
eclipse text editor and in the task list, providing an
integrated interface for running JUnit test suites.
Similarly, S16 uses the same approach for .Net
code but combined with TDD, where the developer
has to write the tests before writing the code.
Finally, S25 improves this approach by adding an
oriented test selection strategy using plugins. Each
module has its own plugin, and it is not necessary
to run all of the unit tests but only the ones related
to the affected module. By using naming
conventions, the proposed framework can find the
test plugin for a specific module, and code
coverage tools can detect modified classes.

Thus, this approach impacts on the execution
times of the unit tests, reducing them and it does
not impact on the test case writing stage.

A summary of the proposed solutions for time-
consuming unit testing is shown in Table 5.

Functional Testing. S6, S27 and S41 propose
test case grouping and segmentation techniques to
face the time-consuming functional testing stage.
Tests are grouped in different suites based on
functionality and speed. In this way, most critical
tests can be run first and developers get fast
feedback from them. Non-critical and slower tests
run later (only if the first ones have passed). Thus,
the test segmentation partially solves the time-
consuming testing problem.

Fig. 6. Testing stages implemented by the studies in
Continuous Software Development

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1019

ISSN 2007-9737

Another alternative for this problem is the use
of parallelization (S6, S13, S22, S27, S41, S43,
S50 and S56). Executing automated tests in
parallel (instead of serially), decreases the amount
of time at running the tests. The tests execution is
distributed through different computers. S56
proposes the use of virtualization as an alternative
for having just one computer and distributing the
test execution through virtual machines. However,
both approaches require considerable hardware.

S25 presents a framework called Morpheus
which reduces the feedback time and provides test
results for only changes committed by the
developer. It reduces the number of tests to be
executed by selecting only the ones that are
related to the changed source code. One of the
strategies they have implemented for the
framework is the Requirement Oriented Test
Selection Strategy: the changed source code can
be linked with the user story, bug fixing
requirement or feature, which can be also linked
with the test cases. Another test case selection
technique is proposed by S44, where the selection
is based on “the analysis of correlations between

test case failures and source code changes”.
However, none of the two approaches have solved
the problem for changes that have an effect on the
entire system.

S23, 24, S34, S45, S46 and S48 propose the
automatic test case prioritization technique to face
the time-consuming problem, using different
prioritization methods. S23, S24 S45 and S48
implemented prioritization based on history data to
determine an optimal order of regression tests in
the succeeding test executions.

On the other hand, S34 uses prioritization
based on business perspective, performance
perspective and technical perspective. Finally, S46
presents a tool called Rocket which executes the
tests that take a shorter time earlier. However, the
results of the prioritization techniques’
implementation show that while they solve the
early detection of critical defects, they do not solve
the time-consuming problem at running the whole
suite of test cases.

Other alternatives were implemented in S26,
S27, S29, S52 and S56. S29 proposes an
approach called long-life CT that uses Artificial

Table 6. Solutions for time-consuming functional testing

Solution
Articles that have

implemented the solution
Degree to which the solution

solves the problem

Test case grouping/segmentation S6, S27, S41 Partial

Test case parallelization
S6, S13, S22, S27, S41, S43,

S50, S56
Total

Automatic test case selection S25, S44 Partial

Automatic test case prioritization
S23, 24, S34, S45, S46, S48,

S52
Partial

Automatic test case selection and
prioritization

S31 Partial

Running tests continuously in a build server S29 Partial

Testing as a service (TaaS) S26, S36 Total

Automatic test case selection, prioritization,
and parallelized run in TaaS

S30 Total

Test case optimization S52 Partial

Browser rotation (web only) S27 Partial

Use of APIs S27 Partial

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1020

ISSN 2007-9737

intelligence (AI) methods at different levels. The
approach consists of running test cases all the time
on a build server and detecting issues via AI
techniques. S52 proposes a test suite optimization
technology called TITAN. S27 proposes browser
rotation as an alternative for increasing speed in
the execution of web UI testing. Rotating the
browsers between consecutive builds can
gradually achieve the same coverage as running
the tests in every single browser for each build.
S27 also propose the use of REST APIs in tests
when some of the test cases require configuration
initialization by using the UI in the application.
Utilizing REST APIs can reduce the testing
duration of some tests scripts because the
operations are considerably faster when compared
with performing them through the UI.

S26 and S56 propose Testing as a Service
(TaaS). Both S26 and S56 state that running
automated tests in parallel is one of the best
solutions for time-consuming testing, but it requires
hardware resources. One of the main advantages
of TaaS over traditional testing is its scalable
model via the cloud: it utilizes computing power,
disk space and memory as per current
requirements but it has the ability to ramp up on
demand very quickly. Thus, running tests in
parallel is not a problem. Furthermore, TaaS
supports multiple types of automated tests and
reduces the cost of in-house testing.

Furthermore, combinations of the
aforementioned techniques are proposed. S31
presents an approach that uses test selection and
test prioritization techniques and integrates
different machine learning methods. These
methods are: test coverage of modified code,
textual similarity between tests and changes,
recent test-failure or fault history, and test age.
However, the approach carries with it the problems
of test selection and test prioritization. Finally, S30
shows how Google faced these problems by
adding to test selection and test prioritization, the
execution of test cases in the cloud (TaaS).

A summary of the proposed solutions for time-
consuming functional testing is shown in Table 6.

Manual Testing. Automated testing has been the
solution for time-consuming manual testing for
years. There are lots of tools that allow developers
to automate both functional and non-functional test
cases. However, apart from functional and non-

functional automated testing, two new approaches
were found in the literature:

1. Automation of negative scenarios (S22):
manual testing is used to perform exploratory
testing that includes negative scenarios (non-
happy path scenarios). However, negative
testing can be automated and that reduces the
time in manual testing stages.

2. Prioritization techniques for manual black-box
system testing (S40): coverage-based testing,
diversity-based testing and risk-driven testing.
The results show that the risk-driven approach
is more effective than the others, in the context
of continuous software development
environments. The risk-driven approach uses
the historical fault detection information and it
requires access to the previous execution
result of the test cases.

Discussion of RQ3-P1

There are many studies which have proposed
solutions for time-consuming testing. For unit
testing, running the tests in the background while
the developer codes seems to be the best solution.
As an addition to this technique, test cases can be
generated automatically in order to decrease the
unit tests creation process.

Regarding functional testing, the use of
parallelization decreases the amount of time at
running the tests. However, it requires
considerable hardware resources. TaaS can solve
this problem because it uses resources on
demand, but it is more costly.

Finally, if test selection and test prioritization
techniques can be added to parallelization or
TaaS, they will improve the testing process.

For manual testing, negative scenarios should
be automated. Also, test prioritization techniques
can be incorporated for the manual
testing process.

3.5.2 RQ3-P2. Automated Flaky Tests

An important characteristic of an automated test is
its determinism. This means that a test should
always have the same result when the tested code
does not change. A test that fails randomly is not
reliable and it is commonly called “flaky test”.
Automated flaky tests slow down progress, cannot
be trusted, hide real bugs and cost money.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1021

ISSN 2007-9737

S25 proposes a framework which runs only
tests related to a new feature or a modified
functionality. In this way, the number of flaky tests
is significantly reduced. However, this framework
only reduces the number of flaky tests, but it does
not skip them or fix them. Similarly, S31 proposes
an approach that performs test selection and test
prioritization using different techniques: coverage
of modified code, textual similarity between tests
and changes, recent test-failure or fault history,
and test age. The approach tracks the failures by
coverage, text and history. When it finds failures
that are not related to the new or modified code in
terms of coverage or text similarity, it means that
those failures belong to an automated flaky test.
Thus, it can detect flaky tests that can be skipped.
S45 also uses test prioritization and test selection
techniques, avoiding breaking builds and delaying
the fast feedback that makes CI desirable.

Automated tests also can be tested for flakiness
(S41). For example, S7 proposes a mechanism for
flaky tests classification, so that it is better to
analyze them. The authors of S7 have studied
common root causes of flaky tests and fixes for
them. The goal of the authors is to identify
approaches that could reveal flaky behaviors, and
describe common strategies used by developers to
fix flaky tests. However, testing tests introduces
effort and time.

Another common strategy is re-running tests.
Google for example (S30) has a system which
collects all the tests that fail during the day and
then it re-runs them at night. It is possible to see
whether they really are flaky tests or not.

They also use a notification system where the
running history of the test that has failed is listed,
so the developer can see if it is a flaky test or not.
Google also has implemented flakiness
monitoring: if the flakiness is too high, the
monitoring system automatically quarantines the
test and then it files a bug for developers.

Finally, S21 proposes and evaluates
approaches to determine whether a test failure is
due to a flaky test or not:

– Postponing the test re-runs to the end of the
test-suite execution. At this time, more
information is available and re-runs can be
avoided altogether.

– Re-running the tests in a different
environment.

– Intersecting the test coverage with the latest
change: If a test that has passed in a previous
revision fails in a new one, and if the test
execution does not depend on the changes
introduced in that revision, it can definitely be
concluded that the test is flaky. If the test

Table 7. Pros and cons of solutions for automated flaky tests

Solution Pros Cons

Test prioritization and test
selection.

(1) It reduces the number of flaky tests
in the test-suite execution.

(1) Flaky tests still exist.
(2) Flaky tests are not identified.

Running tests only for new or
modified code.

(1) Flaky tests are easier to identify and
ignore.

(1) Flaky tests still exist.

Test the tests for flakiness.

(1) Flaky tests can be identified and
ignored.

(2) It is possible to determine the cause
of flakiness.

(3) Flaky tests can be removed or fixed.

(1) Cost and Time

Re-running tests. (1) It reduces the number of failures due
to flaky tests.

(1) Time
(2) Flaky tests still exist.

Postpone tests re-runs to the
end of the execution.

(1) It reduces the number of failures due
to flaky tests.

(2) It is possible to determine the cause
of flakiness.

(1) Time
(2) Flaky tests still exist.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1022

ISSN 2007-9737

depends on the change, it cannot be
concluded whether the test is flaky or not.

Discussion of RQ3-P2

There are different solutions for automated flaky
tests. However, according to the analyzed articles,
all of the solutions have pros and cons (see Table
7), and there is no a perfect and accepted solution
for flakiness yet.

3.5.3 RQ3-P3. User Interface Testing Problems

“High-level tests such as UI acceptance tests are
mostly performed with manual practices that are
often costly, tedious and error prone” [23]. Test
automation has been proposed as an alternative to
solve these problems. However, the UI is the part
of an application that changes most frequently and
it can drive to flaky automated tests. Thus, several
solutions were proposed in order to face this

problem. We analyze them, we summarize them
with their benefits and drawbacks in Table 8.

In a CD pipeline, where automated tests are
executed many times per day, test stability is a key
factor for achieving sufficient throughput. S9
presents a problem related to the low stability of
tests interacting with UI elements.

The authors of S9 state that “stable tests
demand a minimum level of testability, which is
sometimes hard to achieve when testing at the UI
level”. They have improved the testability by
providing additional interfaces for accessing the
application under test at API level. Preconditions
steps can be performed using APIs and the
particular behavior to be tested is performed
through the UI.

This solution reduces the number of
unnecessary UI testing steps. The same approach
is proposed by S27, where the authors state that
“configuration steps can be executed by using

Table 8. Solutions for User Interface Testing Problems

Solution Benefits Drawbacks

Use of APIs for
preconditions instead of
UI testing steps.

(1) Execution speed and robustness.
(2) Decreasing of flakiness.
(3) Reduction in the amount of UI testing

steps.

(1) At running regression suites, changes in
the UI element to verify may cause test
to fails.

Model-based approach.

(1) Flexibility.
(2) Execution speed and robustness.
(3) If changes are made to the

application’s source code that breaks
the model, the developer will receive
a compilation error.

(1) It does not verify that the GUI rendering
is correct.

(2) Interactions with the application during
testing are not performed in the same
way as a user interacts with the software.

(3) It needs synchronization between the
test cases and the application under test.

Visual GUI Testing.

(1) Tests are easy to create.
(2) Flexible.
(3) It can be used on any GUI-based

system regardless of its
implementation or even platform.

(4) Changes in the code of the GUI will
not make the test fail.

(1) Synchronization between test script and
the application state transition.

(2) Images dependency.
(3) Lack of functionality or instability.
(4) Limited online support available for VGT

tools.

Image Comparison.
(1) Easy to implement.
(2) It is very accurate at detecting UI

changes.

(1) If it is used as a testing tool, it may cause
false-positives because of minor
differences caused by UI rendering or
other components like advertisements.

Crowdsourcing GUI
testing.

(1) No automation testing needed.
(2) There are not flaky tests for GUI.
(3) Maintenance is not required.

(1) Dependency on external users.
(2) The users do not know about the

business.
(3) Indeterminate testing time.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1023

ISSN 2007-9737

REST APIs (if possible) to make them more
reliable and thus reduce unnecessary failures”.

In S33, UI testing problems are tackled by
“adopting a model-based approach, centered on
models that represent the data manipulated by the
UI and its behavior”. The models are read by a
compiler, which after a set of tasks produces the
java source code of a test harness. Using the test
harness, the developer can write high level test
cases, which can be ran using Selenium as a
driver. This approach moves most of the fragility
factors from the source code to the models, where
handling them is more effective, and lets the
compiler to generate an up to date test harness.

On the other hand, S8 presents Visual GUI
Testing (VGT). VGT is “a test technique that uses
image recognition in order to interact and assert
the correctness of a system under test through the
bitmap GUI that is shown to the user on the
computer monitor”. The use of image recognition
allows the technique to be used on any GUI-based
system regardless of its implementation or
platform.

Different from second-generation GUI-based
testing tools (like Selenium or Sahi), changes in the
UI code will not make the test fail. However,
several challenges for VGT are presented in S8:

– Maintenance of test scripts (not only for VGT,
but for automated testing in general).

– Synchronization between test script and the
application state transition.

– Image Recognition: According to the authors
of S8, it has been empirically observed that
VGT tools sometimes fail to find an image
without reason, producing false-positive test
results.

– Instability.

– Lack of online support.

In S37, it is presented the results of a case
study focused on the long-term use of VGT at
Spotify. Due to the challenges mentioned in S8,
they decided to abandon VGT in most of the
projects and they started to use a model-based
approach by implementing a tool called
GraphWalker. In S37, the benefits and drawbacks
in relation to these techniques are mentioned,
which are detailed in Table 8.

S38 proposes an approach called “Perceptual
Difference (PD) for Safer Continuous Delivery in UI

applications”. PD combines Computer Vision
concepts with CI to enable recognition of UI-based
changes, assisting testers to check development
branches before deploying the application. Image
Difference is defined by S38 as “a simple Image
Processing technique that involves subtracting one
image from the other”. According to the authors,
“this process is very useful in identifying changes
in an image”. They propose a tool called pDiff in
order to incorporate Image Difference into the CD
pipeline. As UI changes are difficult to manually
keep track of via code, pDiff adopts a solution
which consists in storing screenshots of the live
and staged versions of the application. After the
results of the comparison are generated, the tester
can access the pDiff web application in order to
check its status and manually approve or reject
each difference marked by the tool.

Another completely different approach was
presented in S18. It presents a crowdsourcing GUI
test approach. The authors of this article state that
“it is possible to outsource GUI testing to a very
large pool of testers (users) scattered all over the
world”. They have implemented a prototype
implementation on Amazon’s Mechanical Turk
(MTurk). MTurk is a crowdsourcing marketplace
that allows requesters to submit Human
Intelligence Tasks (HITs) which will be performed
by users against a fee.

When users accept a GUI testing task through
the MTurk website, they are presented with a web
page that shows the display of a VM running the
GUI under test, allowing mouse and keyboard
interactions with it. The VM runs on a remote
server and it is instantiated automatically. The
users are asked to execute a sequence of steps
described in the task and then to report the results.
The interaction of the users with the VMs is
captured by recording the displays of the VMs,
allowing developers to analyze and reproduce
reported problems.

Discussion of RQ3-P3

A vast amount of approaches has been proposed
to face UI testing problems. However, all of them
have benefits and drawbacks that can be seen in
Table 8.

Nevertheless, the use of APIs (like REST
services) for running test preconditions instead of
UI steps can significantly contribute to the test
robustness and thus reduces flakiness. It also

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1024

ISSN 2007-9737

decreases execution time. Thus, using APIs for
precondition steps might be the best solution for
UI tests.

3.5.4 RQ3-P4. Ambiguous Test Results

Test results have to be communicated to
developers properly, indicating whether the tests
have passed or not. It has to be clear what exactly
has broken a build. When a test result does not
fulfill these requirements, then it is an ambiguous
test result.

S8 presents techniques that automate the
results analysis process. It uses examination and
analysis of crash dump files and log files to extract
consistent failure summaries and details. The
authors of S8 called this set of techniques as
“Automated Test Results Processing” and
achieving it requires three steps:

1. Applying consistent methods that improve the
effectiveness of the automated tests.

2. Designing concise problem reports to allow
testers to identify duplicates problems quickly.
Concise problem reports also provide
developers with the information they need to
isolate defects.

3. Automating the test results analysis to collect
the data required to build concise problem
reports.

Another approach is presented in S25. It
presents a solution that improves the quality of the
feedback with the test results by:

1. Executing tests with the product build in a
production-like environment.

2. Providing only test results for the changed
code of the developer.

3. Providing information whether a test has failed
because of the developer’s last change or
because of a previous change.

These feedback reports include:

– Information about the change set of the
commitment which triggered the test run:
change log, committed files, etc.

– An overview about the executed tests with
their results (success or failure). It is also
provided data about how often a test has
already failed.

– URLs to different web pages with detailed
information about the failed tests, including

which exception has been thrown and its
stack trace.

– A code coverage report of the executed tests,
so that the developer will be able to verify
whether the tests have really executed the
modified source code and whether the code
coverage of the written test is good enough.

S27 recommends improving also the failure
messages and the name of test classes/methods
for Selenium UI tests. The authors of S7 state that
exact error messages could make test result failure
analysis easier. Sometimes the tests fail because
an exception thrown from a Page Object. The
exception messages from these Page Objects
range from custom messages to detailed
exceptions from Selenium. The Selenium
exceptions often reveal the root cause, for
example, a certain HTML element was not found
on the page. However, the person doing the failure
analysis may not be able to recognize the element
by the web element selector that is mentioned in
the error. Thus, adding custom messages to
exceptions may better serve the clarity if they are
precise enough. The name of the test is also import
because it is used in the test results and a
descriptive name would greatly improve the
readability of these results.

Finally, S41 reports two techniques to face
ambiguous test results:

1. Test adaptation: the test suites are segmented
and then adapted based on the history of test
runs. According to the authors, it solves time-
consuming testing by running the most critical
tests first and others later only if the first tests
pass. They also state that “when a high-level
test fails, it might be difficult and time-
consuming to find out why the fault occurred”.
Therefore, it is advised that low-level tests
should be able to give the cause of the failure.

2. Commit-by-commit tests: every introduced
change in the repository should be tested
individually, so when tests fail it can be directly
detected which change caused the failure.

Discussion of RQ3-P4

According to the literature, the ambiguity of the
results can be improved by using reports where:

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1025

ISSN 2007-9737

– The cause of the failure is described in a
precise way.

– It is shown only the status of the tests related
to the developer’s change.

– Flaky test results are not shown.

– Custom messages are presented instead of
exceptions and stack traces.

– URLs to web pages and screenshots where
the tests have failed are also provided.

3.5.5 RQ3-P5. Rich Internet Applications and
Modern Web Applications

Modern web applications utilize new technologies
like Flash, Ajax, Angular or they perform advanced
calculations in the client side before carrying out a
new page request. Testing these dynamic
technologies is challenging but some solutions
have been proposed.

For the Ajax challenges, S5 recommends a CT
process as a best practice. To accomplish this, the
required infrastructure should facilitate three
activities:

1. Testing the application code while it is being
built on the server.

2. Testing the server by mimicking client
behavior.

3. Testing not only each component of the
browser, but also their interactions.

These activities should be performed every night
as part of an automated build process. Since many
of the tests in this process require code
deployment to a production or production-like
server, deployment should be also automated.

Furthermore, S54 presents a solution for
websites with accessibility. Accessibility is a non-
functional requirement for web applications.
However, according to the authors of S54, “current
accessibility automatic evaluation tools are not
capable of evaluating DOM dynamic generated
content that characterizes Ajax applications and
Rich Internet Applications (RIA)”. In this context,
S54 describes an approach for testing accessibility
requirements in RIA, by using acceptance tests.
The approach adds a set of assistive technology
user scenarios to the automated acceptance tests,
in order to guarantee keyboard accessibility in web
applications. These tests provide an end-to-end
accessibility analysis, from server-side to client-
side implementations (javascript and dynamically

generated DOM elements) in RIA. As the tests are
automated, they can be incorporated in a CD
process.

Discussion of RQ3-P5

Even though both of the aforementioned
studies present approaches for problems based on
RIA and modern web applications, they do not
present solutions for specific dynamic content
challenges.

In [50] for example, a framework that is
composed by Selenium and TestNG is proposed.
It shows that Selenium has a feature that allows
tests to implement three different waiting and
timeouts configurations, so that they will not fail
because of dynamic content. This feature will wait
until the application gets its final state before
continuing with the next step or verification.

3.5.6 RQ3-P6. Big Data Testing Problems

Big data is the process of using large datasets that
cannot be processed using traditional techniques.
Testing these datasets is a new challenge that
involves various tools, techniques and
processing frameworks.

S3 presents two problems with big data testing,
and hadoop-based techniques that may be
solutions for them:

1. “Processing big data takes a long time”. One
possible solution is test data generation using
Input Space Partitioning with parallel
computing. The process starts with an input-
domain model (IDM). Then, the tester
partitions the IDM and selects test values from
the partitions. Finally, a combinatorial
coverage criteria is applied to generate tests.

2. “Validation of transferred and transformed data
is difficult to implement”. Transferred data can
be tested by checking the number of columns
and rows, the columns’ names, and the data
types. If the data source and the target data
are provided, this validation can be automated.
On the other hand, there are some
workarounds to test transformed data, but it is
still a challenge. Some of the approaches are:

a. To validate whether the target data has
correct data types and value ranges at a
high level by deriving data types and value

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1026

ISSN 2007-9737

ranges from requirements, then
generating tests to validate the target data.

b. To compare the source data with the target
data to evaluate whether or not the target
data was transformed correctly.

In S4, quality assurance techniques for big data
applications are presented. First, the authors of S4
list quality attributes for big data applications: data
accuracy, data correctness, data consistency and
data security. Then they present the quality factors
of big data applications: performance, reliability,
correctness and scalability. Finally, they discuss
the methods to ensure the quality of big data
application: model-driven architecture (MDA),
monitoring, fault-tolerance, verification
and prediction.

Discussion of RQ3-P6

Trivial solutions for transferred data and
transformed data were proposed. One of the
studies has also proposed test data generation
using “Input Space Partitioning” with parallel
computing in order to decrease the processing
data time testing. However, it was not considered
other big data stages such as data streaming, data
enrichment, data storing in distributed nodes, data
analysis or graph processing.

Finally, it has been proposed quality attributes
and quality factors that can be considered at the
time of testing big data systems.

3.5.7 RQ3-P7. Data Testing Problems

Data is very important for different types of
systems and errors in these systems are costly.
While software testing has received highly
attention, data testing has been poorly considered.

S41 reports a partial solution for data testing
problems using database schema changes testing.
In S19, the authors propose an approach called
Continuous Data Testing (CDT), in which a tool run
test queries in the background, while a developer
or database administrator modifies a database.
This technique notifies the user about data bugs as
quickly as they are introduced, leading to three
benefits:

1. The bug is discovered quickly and can be fixed
before it causes a problem.

2. The bug is discovered while the data change is
fresh in the user’s or administrator’s mind,
increasing the chance to fix the bug quickly.

3. Contribute to poor data documentation.

According to the authors of S19, “CDT can
discover multiple kinds of errors, including
correctness errors and performance-degrading
errors”. They conclude that “the goal is not to stop
errors from being introduced, but to shorten the
time to detection as much as possible”.

S49 presents an approach called TDD for
Relation Databases. To extend TDD practice to
database development, database tasks equivalent
to regression testing, refactoring and CI
are necessary:

– In database regression testing, the database
is validated by running a comprehensive test
suite that includes:

– Interface testing. From the database’s
viewpoint, these are black-box tests that
verify how systems will access the database.

– Internal testing. There are tests that verify
data and database behavior.

– In database refactoring, a simple change is
made to a database that improves its design
(while keeping its behavioral and
informational semantics).

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1027

ISSN 2007-9737

– In continuous database integration,
developers integrate their changes to their
local database instances, including structural,
functional, and informational changes. In any
case, whenever someone submits a
database change, tests should verify that the
database keeps stable. After that, everyone
else working with the same database should
download the change from the configuration
management system and apply it to their own
local database instance as soon as possible.

The authors of S49 also present the best practices
for continuous database integration:

– Automate the build.

– Put everything under version control (data
scripts, database schemas, test data, data
models, and similar artifacts).

– Give developers their own database copies.

Discussion of RQ3-P7

According to the literature, data testing can be
performed in the same way as in conventional
software testing. Data testing can be automated
and incorporated into the CI server. Data artifacts
such as scripts, schemas or models have to be
added to the version control system.

Every change on these artifacts should trigger
the automated tests (including data testing) as
soon as possible.

Also, we believe that the quality attributes and
quality factors proposed for Big Data testing
problems can be considered for Data testing.

3.5.8 RQ3-P8. Mobile testing problems

Mobile testing has brought with it a lot of
challenges regarding the testing process, the
testing artifacts, the testing levels, the type of
testing, the different type of devices, and the costs
of automated testing. Because of these
challenges, a few proposals for mobile testing have
emerged.

S13 presents the continuous deployment
process of mobile applications at Facebook. In that
article, the authors mention that testing is
particularly important for mobile apps because:

1. Many mobile software updates are made each
week.

2. There are hundreds of mobile devices and
operating systems where the software has to
run on.

3. When critical issues arise in production, there
are just a few options to deal with them.

According to S13, “Facebook applies numerous
types of tests, including unit tests, static analysis

Table 9. Non-Functional Requirements considered for CD

Non-Functional Requirement Tool/Technique/Approach Article

Maintainability SonarQube, Gerrit S2, S13, S22, S47, S9, S11, S39, S12

Performance JMeter S2, S13, S47, S43, S9, S11, S39

Correct Installation/Deployment JUnit, TestNG, XUnit, NUnit S14, S22

Compatibility Cross-Browser Testing S14, S39

Localization and Internalization G11N/L10N Testing S14

Load JMeter, Grinder, Gatling S14, S43, S9, S11

Stress JMeter, Gatling S14, S9

Documentation Own Framework S14

Security Own Framework S22

Accessibility Own Framework S54

Usability Own Framework S22

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1028

ISSN 2007-9737

tests, integration tests, screen layout tests,
performance tests, build tests, and manual tests”.
These tests are automated and they are run in
hundreds of nodes using simulated and emulated
environments. For performance testing on real
hardware, Facebook uses a mobile device lab, with
a primary focus on characteristics of the
application such as speed, memory usage, and
battery efficiency. The mobile device lab contains
electromagnetically isolated racks. Each rack
contains multiple nodes which are connected to
real mobile devices with different operating
systems. Thus, Facebook’s testing strategy
encompasses the following principles:

– Coverage: testing has to be performed as
extensively as possible.

– Responsive: regression tests have to be run
in parallel. The goal is to provide the
developer with the results from smoke-tests
within 10 minutes of his/her actions.

– Quality: tests should identify issues with
precision. Flaky tests need to be minimized.

– Automation: automate as many tests as
possible.

– Prioritization: tests have to be prioritized since
they use too many computing resources in
regressions.

S35 proposes a novel framework that can be
applied to test different mobile browsers and
applications using a tool called Appium. The novel
framework works for native, hybrid and mobile-web

Fig. 7. Non-Functional requirements in CD

Fig. 8. Open Issues in Continuous Testing

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1029

ISSN 2007-9737

applications for iOS and Android systems. It is a
data driven test automation framework that uses
the Appium test library to automatically test mobile
applications. According to a study made by the
authors of S35, “the framework will improve the
testing process for mobile applications, save time
and speed up the process of testing and release
any mobile application in a short period of time”.

Finally, S20 presents a combination of Appium
and TaaS. The authors of S20, describe a case
study of the MedTabImager tool using this
framework to run UI tests. The tests ran against a
cloud service (Sauce Labs). According to the
authors of S20, “setting up Sauce Labs on the CI
server with a specific plugin did not require much
effort”. A successful build (which includes unit
tests) triggers the UI tests on Sauce Labs
automatically. Even though tests are automated,
manual testing cycles are required before
releasing. To automate the app distribution S20
used “distribution of beta builds” using a cloud-
based service called TestFairy4. For
MedTabImager, the authors state that “the TaaS
solution requires less setup effort and works fairly
well”.

Discussion of RQ3-P8

All testing levels and stages discussed for RQ2 can
be considered for mobile testing. Mobile test cases
can be automated using existing tools like Appium.
They also can be parallelized and there are three
approaches for mobile testing environments:

1. Emulated devices with different operating
systems – for development environments.

2. Physical mobile devices – for production like
environments.

3. Cloud service (like Sauce Labs).

3.5.9. RQ3-P9. Continuous Testing of Non-
functional Requirements

While unit, integration and functional tests have
been extensively discussed in the literature and
widely practiced in CD, testing non-functional
requirements has been overlooked. In Table 9, we
present a list of the different non-functional
requirements that were considered by the studies
in the implementation of the CD pipelines. Fig. 7
also shows the amount of times they were
considered, as a brief discussion of RQ3-P9.

3.6 RQ4. Are there open issues related to CT?

After the analysis of the 56 articles, we found
different challenges in terms of open issues for CD.
Some of these challenges are related to testing.
We list them as follow:

– CT of applications composed by cloud
services (S6): The number of available cloud
services and the size of data they need to
handle are often large. Testing workflows
composed of those services is a challenge.
Another concern is the necessity to provide
Quality of Service (QoS) guarantees [51].

– TaaS in CD (S26): TaaS is a model in which
testing is performed by a service provider
rather than employees. The most popular
TaaS tools are Sauce Labs, BlazeMeter and
SOASTA CloudTest. BlazeMeter has
presented in 2015, a solution for continuous
delivery using TaaS called “Continuous
Testing as a Service” (CTaaS) [52].

– Continuous Monitoring (S12, S53): with the
capability to test early on a production like
system, there is an opportunity to monitor
several quality parameters throughout and
hence ability to react to sudden issues in
timely manner.

– Challenges in VGT (S28, S37): Currently no
research has explored the benefits of using
VGT for CT. However, used in long-term
(years) projects, VGT has still many
challenges to solve:

– Test scripts have limited use for applications
with dynamic/non-deterministic output

– Test scripts require image maintenance.

– VTG tool scripts have limited applicability for
mobile applications

– VTG tool scripts lock up the user’s computer
during test execution.

– Automated testing of Microservices (S32):
According to the authors of S32,
“Microservices concept is relatively new, so
there are just few articles in the field of
microservice validation and testing right now”.

Discussion of RQ4

Discussion of RQ4

While open issues were found in the field of CT,
some of the problems aforementioned in this article

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1030

ISSN 2007-9737

have not been fully realized. For that reason, we
have added those problems to the list of open
issues. This can be seen in Fig. 8.

It is also important to determine the maturity of
automated testing in every test stage. In [53], a
model to determine the maturity of test automation
is proposed as an area of research and
development in the software industry.

4 Conclusions and Future Works

In this paper, we have presented a SLR focused
on CT and solutions for testing problems in CD.

Our first goal was to validate if an accepted
definition for CT existed and if it was related to CD,
like the other C-approaches (CI, CDP). The results
show that the concept of CT has been evolving
over the years. At the beginning, it was only
applied to the execution of unit tests continuously
and now it does not apply only to unit testing, but
also to every type of test case that can be
automated. Thus, it was validated that CT is the
process of running any type of automated test case
as quickly as possible in order to provide rapid
feedback to the developers and detecting critical
issues before going to production. This CT
definition is one of the CD main goals, so we
concluded that CT is directly related to CD.

We also looked for different testing levels or
stages in CD. Unit testing, functional testing and
performance, load and stress testing are the most
used stages in continuous software development
environments.

Our third goal was to look at proposals,
techniques, approaches, tools and other kind of
solutions for the different existing testing problems
in CD. We found that many solutions have been
proposed to face the mentioned problems. Time-
consuming testing has been the most discussed
problem by the articles, where new techniques,
approaches and tools have been proposed to solve
it. On the other hand, flaky tests, big data testing
and the testing of modern web applications that
use Flash, AJAX, Angular or similar technologies,
are problems that were not completely solved yet.
Nevertheless, we believe that the different studied
solutions may mean a contribution to CD and a list
of key success factors can be set by combining
them properly.

Finally, we wanted to check whether open
issues exist or not for CT. We set a list of 5 open
issues for CT: CT of applications based on cloud
services, challenges with VGT, continuous
monitoring, TaaS in CD and automated testing of
microservices. However, we consider that flaky
tests, big data testing and modern web
applications testing are challenges that need to be
faced.

As future work, we will research on new
approaches to face the mentioned open issues,
and we will set a list of key success factors for
testing in CD.

In addition, we will design standardized testing
models for CD, using the different stages found for
CT. We will work on a framework that will
implement these models using the different
existing testing approaches and the different
solutions for testing problems that were found in
this SLR.

Acknowledgements

This research was supported by GICS (Grupo de
Investigación de Calidad de Software - F010-2013
Project) at Universidad Nacional del Nordeste.

We also thank Guy Finkill who provided
language help for the preparation of this
paperAppendix A. Selected Papers.

References

1. Fowler, M. (2014). https://martinfowler.com/bliki
/ContinuousDelivery.html.

2. Prusak, O. (2015). The Missing Link in the
Continuous Delivery Process. BlazeMeter.
https://www.blazemeter.com / blog / continuous-
testing-missing-link-continuous-delivery-process.

3. Laukkanen, E., Itkonen, J., & Lassenius, C.
(2017). Problems, causes and solutions when

adopting continuous delivery - A systematic
literature review. Information and Software
Technology, Vol. 82, pp. 55–79. DOI: 10.1016/
j.infsof.2016.10.001.

4. Humble, J. & Farley, D. (2010). Continuous
Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1031

ISSN 2007-9737

5. Fowler, M. & Foemmel, M. (2015). Continuous

integration. Online: https://www.thoughtworks.com /
continuous-integration.

6. Olsson, H. H., Alahyari, H., & Bosch, J., (2012).

Climbing the stairway to heaven - A multiple-case
study exploring barriers in the transition from agile
development towards continuous deployment of

Appendix A. Selected Papers

Table A.1. List of included articles

Ref Name of the article

S1 [54] A complete automation of unit testing for JavaScript programs

S2 [55] A Practical Approach to Software Continuous Delivery Focused on Application Lifecycle Management

S3 [56] A Scalable Big Data Test Framework

S4 [57] A survey on quality assurance techniques for big data applications

S5 [27] Ajax best practice: Continuous testing

S6 [58] An approach for service composition and testing for cloud computing

S7 [59] An Empirical Analysis of Flaky Tests

S8 [60] Automated Test Results Processing

S9 [61] Automated testing in the continuous delivery pipeline: A case study of an online company

S10 [62] Continuous Architecture and Continuous Delivery

S11 [10] Continuous Delivery: Huge Benefits, but Challenges Too

S12 [63] Continuous delivery practices in a large financial organization

S13 [64] Continuous Deployment of Mobile Software at Facebook

S14 [65] Continuous Software Testing in a Globally Distributed Project

S15 [66] Continuous Test Generation on Guava

S16 [67] Continuous test-driven development: A novel agile software development practice and supporting tool

S17 [68] Continuous testing in eclipse

S18 [69] Crowdsourcing GUI tests

S19 [29] Data debugging with continuous testing

S20 [70] Designing an Android continuous delivery pipeline

S21 [71] Determining flaky tests from test failures

S22 [72] DevOps Advantages for Testing: Increasing Quality through Continuous Delivery

S23 [73] Effect of time window on the performance of continuous regression testing

S24 [74] Failure history data-based test case prioritization for effective regression test

S25 [75] Fast feedback from automated tests executed with the product build

S26 [76] Hard Problems in Software Testing Solutions Using Testing as a Service (TaaS)

S27 [77] Improving Web User Interface Test Automation in Continuous Integration

S28 [78] Industrial application of visual GUI testing: Lessons learned

S29 [79] Intelligent Testing System

S30 [80] Large-scale test automation in the cloud

S31 [81] Learning for Test Prioritization: An Industrial Case Study

S32 [82] Microservices validation: Mjolnirr platform case study

S33 [83] Model-Based Continuous Integration Testing of Responsiveness of Web Applications

S34 [84] Multi-Perspective Regression Test Prioritization for Time-constrained Environments

S35 [85] Novel Framework for Automation Testing of Mobile Applications using Appium

S36 [86] O!Snap: Cost-Efficient Testing in the Cloud

S37 [87] On the long-term use of visual GUI testing in industrial practice: A case study

S38 [88] Perceptual Difference for Safer Continuous Delivery

S39 [89] Principles of Continuous Architecture

S40 [90] Prioritizing Manual Test Cases in Traditional and Rapid Release Environments

S41 [3] Problems, causes and solutions when adopting continuous delivery—A systematic literature review

S42 [91] Reducing wasted development time via continuous testing

S43 [92] Regression and Performance Testing of an e-learning Web Application - dotLRN

S44 [93] Supporting Continuous Integration by Code-Churn Based Test Selection

S45 [94] Techniques for Improving Regression Testing in Continuous Integration Development Environments

S46 [95] Test case prioritization for continuous regression testing: An industrial case study

S47 [96] Test Orchestration: A framework for Continuous Integration and Continuous Deployment

S48 [97] Test prioritization with optimally balanced configuration coverage

S49 [98] Test-Driven Development of Relational Databases

S50 [99] Testing in parallel: A need for practical regression testing

S51 [100] The State of Continuous Integration Testing @Google

S52 [101] TITAN: Test Suite Optimization for Highly Configurable Software

S53 [102] Understanding DevOps & bridging the gap from continuous integration to continuous delivery

S54 [103] Using acceptance tests to validate accessibility requirements in RIA

S55 [104] Verdict Machinery: On the Need to Automatically Make Sense of Test Results

S56 [105] Virtual to the (Near) End: Using Virtual Platforms for Continuous Integration

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1032

ISSN 2007-9737

software. 38th EUROMICRO, Conference on
Software Engineering and Advanced Applications
(SEAA), pp. 392–399. DOI:10.1109/SEAA.2012.54.

7. Auerbach, A. (2015). Part of the Pipeline: Why

Continuous Testing Is Essential. TechWell Insights.

Appendix B. Quality assessment of the included studies

Table B.1. List of papers and quality scores

ID Q1 Q2 Q3

Q4 Q5 Q6 Q7 Q8 Q9 Q10
Total
Score

Quality Citations

S1 1 1 1 0 0.5 1 0.5 0 0 1 6 60% 11

S2 1 1 1 0 1 0.5 0.5 0 1 1 8 70% 0

S3 1 1 1 0 0 0 0 0 0 1 4 40% 5

S4 1 1 1 1 1 1 1 0.5 0.5 0.5 8.5 85% 0

S5 0 0 1 0 0 0 0 0 0 0.5 1.5 15% 0

S6 1 1 0.5 1 1 0 0 1 1 1 7.5 75% 37

S7 1 1 1 1 1 1 1 1 0 1 9 90% 31

S8 1 1 0 0.5 1 0.5 0 0.5 0 1 5.5 55% 1

S9 1 1 1 1 1 1 1 1 0 1 9 90% 8

S10 1 1 1 0 0 1 1 1 0 1 7 70% 3

S11 1 1 1 0 0 0 1 1 1 1 7 70% 73

S12 1 1 1 0.5 1 1 1 1 1 1 1 95% 4

S13 1 1 1 0 0 0 1 1 1 1 7 70% 1

S14 1 0.5 1 0 1 1 1 1 1 1 8.5 85% 6

S15 1 0.5 1 0 1 1 1 1 1 1 8.5 85% 13

S16 1 1 1 0 1 1 1 1 1 1 9 90% 8

S17 1 1 1 0 0.5 0.5 0.5 1 1 1 7.5 75% 58

S18 1 1 1 0.5 1 0.5 1 1 1 1 8.5 90% 18

S19 1 0.5 1 0 0 0 0 0 1 1 4.5 45% 13

S20 1 0.5 0.5 1 1 1 1 0.5 1 0.5 8 80% 3

S21 1 1 1 0 1 1 1 0.5 1 1 8.5 85% 0

S22 1 0.5 1 0 1 1 1 1 1 1 8.5 85% 2

S23 1 1 1 0 1 1 1 1 1 1 7 90% 0

S24 1 1 1 0 0 0 1 1 1 1 7 70% 0

S25 1 0.5 1 0 0.5 1 1 1 1 1 8 80% 2

S26 1 1 0 1 0 0 1 1 0.5 1 4 65% 3

S27 1 0 0 0 0 0 1 1 0 1 4 40% 0

S28 1 1 0 1 0 0 1 1 0.5 1 4 65% 0

S29 1 1 0.5 0 0.5 0.5 1 1 0.5 1 7 70% 2

S30 1 1 1 0 1 1 1 1 1 1 9 90% 2

S31 1 1 1 0.5 1 1 1 1 0 1 8.5 85% 1

S32 1 0.5 1 0.5 1 1 1 1 0 1 8 80% 11

S33 1 1 0.5 0 0 0.5 0.5 0.5 0.5 1 5.5 55% 1

S34 1 1 1 0.5 1 1 1 1 1 1 9.5 95% 2

S35 1 1 1 0.5 0 1 1 1 0 1 7.5 75% 0

S36 1 1 1 0.5 1 1 1 1 0 1 8.5 85% 0

S37 1 1 1 0.5 1 1 1 1 1 1 9.5 95% 0

S38 0 0.5 0.5 0 1 0 0 0.5 0.5 1 4 40% 0

S39 1 1 0 0 0 0 1 1 0 1 5 50% 3

S40 1 1 1 0.5 1 1 1 1 1 1 9.5 95% 11

S41 1 1 1 1 1 1 1 1 1 1 10 100% 4

S42 1 1 1 0.5 1 1 1 1 1 1 9.5 95% 128

S43 1 1 1 0.5 1 0.5 1 0.5 1 1 8.5 85% 5

S44 1 1 1 0.5 0.5 1 1 0.5 0 1 7.5 75% 6

S45 1 1 1 0.5 1 1 1 1 1 1 9.5 95% 48

S46 1 1 1 0.5 1 0.5 1 1 1 1 9 90% 25

S47 1 1 1 0.5 0.5 0.5 1 0.5 1 1 8 80% 5

S48 1 1 1 1 1 1 1 1 1 1 10 100% 0

S49 1 1 1 0 0 0 0.5 1 0 1 5.5 55% 22

S50 1 1 1 0 0 0 0.5 1 1 1 6.5 65% 3

S51 1 0.5 1 0 1 1 1 1 1 1 8.5 85% 0

S52 1 1 1 0.5 1 1 1 1 1 1 9.5 95% 0

S53 1 1 0.5 0 0.5 0 0 1 1 1 6 60% 18

S54 1 1 1 0.5 1 1 1 1 0.5 1 9 90% 15

S55 1 1 1 1 1 1 1 1 0 1 9 90% 1

S56 1 1 1 0 0.5 0 0.5 1 1 1 7 70% 1

Total 76%

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1033

ISSN 2007-9737

https://www.techwell.com / techwell-insights / 2015
/08/part-pipeline-why-continuous-testing-essential.

8. Philipp-Edmonds, C. (2014). The Relationship

between Risk and Continuous Testing: An Interview
with Wayne Ariola. https://www.stickyminds.com /
interview/relationship-between-risk-and/continuous
continuous-testing-interview-wayne-ariola.

9. Ståhl, D. & Bosch, J. (2014). Automated software

integration flows in industry: A multiple-case study.
Companion Proceedings of the 36th International
Conference on, pp. 54–63. DOI: 10.1145/2591062.
2591186.

10. Software Engineering (2014). htpp://www.allengi

neeringschools.com/engineering-careers/computer
-software-engineer/famous-software-engineers/,
pp. 54–63.

11. Chen, L. (2015). Continuous Delivery: Huge
benefits, but challenges too. IEEE Software, Vol.
32, No. 2, pp. 50–54. DOI: 10.1109/MS.2015.27.

12. Debbiche, A., Dienér, M., & Svensson, R. B.
(2014). Challenges When Adopting Continuous
Integration: A Case Study. International Conference
on Product-Focused Software Process
Improvement, Springer International Publishing, pp.
17–32. DOI: 10.1007/978-3-319-13835-0_2.

13. Fitzgerald, B. & Stol, K. (2014). Continuous

software engineering and beyond: Trends and
challenges. Proceedings of the 1st International
Workshop on Rapid Continuous Software
Engineering, pp. 1–9. DOI:10.1145/2593812.259
3813.

14. Claps, G. G., Svensson, R. B., & Aurum, A.
(2015). On the journey to continuous deployment:

Technical and social challenges along the way.
Information and Software technology, Vol. 57, pp.
21–31. DOI: 10.1016/j.infsof.2014.07.009.

15. Fitzgerald, B. & Stol, K. J. (2017). Continuous

software engineering: A roadmap and agenda.
Journal of Systems and Software, Vol. 123, pp.
176–189. DOI: 10.1016/j.jss.2015.06.063.

16. Mäntylä, M. V., Adams, B., Khomh, F., Engström,
E., & Petersen, K. (2015). On rapid releases and

software testing: a case study and a semi-
systematic literature review. Empirical Software
Engineering, Vol. 20, No. 5, pp. 1384–1425. DOI:
1007/s10664-014-9338-4

17. Neely, S. & Stolt, S. (2013). Continuous delivery?

easy! just change everything. IEEE Agile
Conference (AGILE’13), pp. 121–128. DOI: 10.1109
/AGILE.2013.17.

18. Chen, L. (2017). Continuous Delivery: Overcoming
adoption challenges. Journal of Systems and

Software, Vol. 128, pp. 72–86. DOI: 10.1016/
j.jss.2017.02.013.

19. Brooks, G. (2008). Team pace keeping build times

down. IEEE Agile Conference (AGILE'08), pp. 294–
294. DOI: 10.1109/Agile.2008.41.

20. Laukkanen, E., Lehtinen, T.O., Itkonen, J.,
Paasivaara, M., & Lassenius, C. (2016). Bottom-

up adoption of continuous delivery in a stage-gate
managed software organization. Proceedings of the
10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement,
pp. 45. DOI: 10.1145/2961111.2962608.

21. Cannizzo, F., Clutton, R., & Ramesh, R. (2008).

Pushing the boundaries of testing and continuous
integration. IEEE Agile Conference (AGILE'08), pp.
501505. DOI: 10.1109/Agile.2008.31.

22. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta,
V. P., Itkonen, J., Mäntylä, M. V., & Männistö, T.
(2015). The highways and country roads to
continuous deployment. IEEE Software, Vol. 32,
No. 2, pp. 64–72. DOI 10.1109/MS.2015.50.

23. Debbiche, A. & Dienér, M. (2014). Assessing

challenges of continuous integration in the context
of software requirements breakdown: A case study.
Master Thesis, University of Gothenburg,
Gothenburg, Sweden, pp. 1–65.

24. Alégroth, E., Feldt, R., & Ryrholm, L. (2015).

Visual GUI testing in practice: challenges, problems
and limitations. Empirical Software Engineering,
Vol. 20, No. 3, pp. 694–744. DOI: 10.1007/s10664-

013-9293-5.

25. Borjesson, E. & Feldt, R. (2012). Automated

system testing using visual GUI testing tools: A
comparative study in industry. IEEE Fifth
International Conference on Software Testing,
Verification and Validation (ICST), pp. 350–359.
DOI 10.1109/ICST.2012.115.

26. Pradhan, L. (2012). User Interface Test Automation
and its Challenges in an Industrial Scenario. Master
Thesis. School of Innovation, Design and
Engineering. Mälardalen University Sweden,
Sweden.

27. Suwala, P. (2015). Challenges with modern web
testing. Master Thesis. Institutionen för
datavetenskap. Department of Computer and
Information Science. Linköpings universitet,
Linköping, Sweden. No. LIU-IDA/LITH-EX-A--
15/013—SE.

28. Huizinga, D. & Kolawa, D. (2017). AJAX best
practice: Continuous testing. Automated Defect
Prevention: Best Practices in Software
Management, Anonymous Wiley-IEEE Computer
Society Press, pp. 391–393.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1034

ISSN 2007-9737

29. Garg, N., Singla, S., & Jangra, S. (2016).

Challenges and Techniques for Testing of Big Data.
Procedia Computer Science, Vol. 85, pp. 940–948.
DOI: 10.1016/j.procs.2016.05.285.

30. Muşlu, K., Brun, Y. & Meliou, A. (2013). Data
debugging with continuous testing. Proceedings of
the 9th Joint Meeting on Foundations of Software
Engineering, pp. 631–634. DOI: 10.1145/2491411.
2494580.

31. Muccini, H., Di-Francesco, A., & Esposito, P.
(2012). Software testing of mobile applications:

Challenges and future research directions.
Proceedings of the 7th International Workshop on
Automation of Software Test, IEEE Press, pp. 29–
35.

32. Feitelson, D. G., Frachtenberg, E. & Beck, K. L.
(2013). Development and deployment at Facebook.
IEEE Internet Computing, Vol. 17, No. 4, pp. 8–17.
DOI: 10.1109/MIC.2013.25.

33. Schumacher, J. (2011). Continuous Deployment at

Atlassian. https://www.atlassian.com/blog/archives/
continuous _ deployment _ at _ atlassian.

34. Rodríguez, P., Haghighatkhah, A., Lwakatare, L.
E., Teppola, S., Suomalainen, T., Eskeli, J.,
Karvonen, T., Kuvaja, P., Verner, J. M., & Oivo,
M. (2017). Continuous deployment of software

intensive products and services: A systematic
mapping study. Journal of Systems and Software,
Vol. 123, pp. 263–291. DOI:10.1016/j.jss.2015.
12.015.

35. Ståhl, D. & Bosch, J. (2013). Experienced benefits

of continuous integration in industry software
product development: A case study. Proceedings of
the 12th IASTED international conference on
software engineering, pp. 736–743. DOI:
10.2316/P. 2013.796-012.

36. Ståhl, D. & Bosch, J. (2014). Modeling continuous

integration practice differences in industry software
development. Journal of Systems and Software,
Vol. 87, pp. 48–59. DOI: 10.1016/j.jss.2013.08.032.

37. Eck, A., Uebernickel, F., & Brenner, W. (2014). Fit

for continuous integration: How organizations
assimilate an agile practice. Proceedings of the
20th Americas Conference on Information Systems,
pp. 1–11.

38. Cruzes, D. S. & Dybå, T. (2011). Research

synthesis in software engineering: A tertiary study.
Information and Software Technology, Vol. 53, No.
5, pp. 440–455.

39. Kitchenham, B., Brereton, O. P., Budgen, D.,
Turner, M., Bailey, J., & Linkman, S. (2009).

Systematic literature reviews in software
engineering – a systematic literature review.

Information and software technology, Vol. 51, No. 1,
pp. 7–15. DOI: 10.1016/j.infsof.2008.09.009.

40. Dybå, T. & Dingsøyr, T. (2008). Strength of

evidence in systematic reviews in software
engineering. Proceedings of the Second ACM-IEEE
international symposium on Empirical software
engineering and measurement, pp. 178–187. DOI:
10.1145/1414004.1414034.

41. Brereton, P., Kitchenham, B. A., Budgen, D.,
Turner, M., & Khalil, M. (2007). Lessons from

applying the systematic literature review process
within the software engineering domain. Journal of
systems and software, Vol. 80, No. 4, pp. 571–583.
DOI: 10.1016/j.jss.2006.07.009.

42. Kitchenham, B. & Charters, S. (2007). Guidelines
for performing systematic literature reviews in
software engineering. Keele University and Durham
University. Report No. EBSE 2007-001.

43. Do Carmo-Machado, I., Mcgregor, J. D.,
Cavalcanti, Y. C. & De Almeida, E. S. (2014). On

strategies for testing software product lines: A
systematic literature review. Information and
Software Technology, Vol. 56, No. 10, pp. 1183–
1199. DOI: 10.1016/j.infsof.2014.04.002.

44. Vilela, J., Castro, J., Martins, L. E. G., &
Gorschek, T. (2017). Integration between

requirements engineering and safety analysis: A
systematic literature review. Journal of Systems and
Software, Vol. 125, pp. 68–92. DOI:10.1016/j.jss.
2016.11.031.

45. Dermeval, D., Vilela, J., Bittencourt, I. I., Castro,
J., Isotani, S., Brito, P., & Silva, A. (2016).

Applications of ontologies in requirements
engineering: a systematic review of the literature.
Requirements Engineering, Vol. 21, No. 4, pp. 405–
437. DOI: 10.1007/s00766-015-0222-6.

46. Easterbrook, S., Singer, J., Storey, M. A. &
Damian, D. (2008). Selecting empirical methods for
software engineering research. Guide to advanced
empirical software engineering, pp. 285–311. DOI:

10.1007/978-1-84800-044-5_11.

47. Wieringa, R., Maiden, N., Mead, N., & Rolland, C.
(2006). Requirements engineering paper

classification and evaluation criteria: a proposal and
a discussion. Requirements Engineering, Vol. 11,

No. 1, pp. 102–107. DOI: 10.1007/s00766-005-
0021-6.

48. Smith, E. G. (2000). Continuous testing.
Proceedings of the 17th International Conference
on Testing Computer Software.

49. Duvall, P. M., Matyas, S., & Glover, A. (2007).
Continuous integration: improving software quality
and reducing risk. Pearson Education.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1035

ISSN 2007-9737

50. Graham, D., Van Veenendaal, E., & Evans, I.
(2008). Foundations of software testing: ISTQB
certification. Cengage Learning EMEA.

51. Bindal, P. & Gupta, S. (2012). Test Automation
Selenium WebDriver using TestNG. Journal of
Engineering Computers & Applied Sciences
(JECAS), Vol. 3, No. 9, pp. 18–40.

52. Barquet, A. L., Tchernykh, A., & Yahyapour, R.
(2013). Performance Evaluation of Infrastructure as
Service Clouds with SLA Constraints. Computacion
y Sistemas, Vol. 17, No. 3, pp. 401–411.

53. Blaze Meter. (2015). BlazeMeter Introduces

Continuous-Testing-as-a-Service to Marketplace.
https://www.blazemeter.com/blazemeter-newsnew
s/blazemeter-introduces-continuous-testing-service
-marketplace.

54. Serna, M. E., Martínez, M. R., & Tamayo, O. P. A.
(2017). A Model for Determining the Maturity of

Automation of Software Testing as a Research and
Development Area. Computacion y Sistemas, Vol.
21, No. 2, pp. 337–352.

55. Alshraideh, M. (2008). A complete automation of

unit testing for javascript programs. Journal of
Computer Science, Vol. 4, No. 12.

56. Gomede, E., Da Silva, R. T. & De Barros, R. M.
(2015). A practical approach to software continuous

delivery focused on application lifecycle
management. Proceedings of the 27th Software
Engineering and Knowledge Engineering (SEKE),
pp. 320–325. DOI: 10.18293/SEKE2105-126.

57. Li, N., Escalona, A., Guo, Y., & Offutt, J. (2015).
A scalable big data test framework. Proceedings of
the IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pp. 1–2.
DOI: 10.1109/ICST.2015.7102619.

58. Zhang, P., Zhou, X., Gao, J., & Tao, C. (2017). A

survey on quality assurance techniques for big data
applications. Proceedings of the 3rd International
Conference on Big Data Computing Service and
Applications. DOI:10.1109/BigDataService.2017.42

59. Tsai, W. T., Zhong, P., Balasooriya, J., Chen, Y.,
Bai, X., & Elston, J. (2011). An approach for

service composition and testing for cloud
computing. Proceedings of the 10th International
Symposium on Autonomous Decentralized
Systems (ISADS), pp. 631–636. DOI: 10.1109/ISAD
S.2011.90.

60. Luo, Q., Hariri, F., Eloussi, L., & Marinov, D.
(2014). An empirical analysis of flaky tests.
Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, pp. 643–653. DOI: 10.1145/
2635868.2635920.

61. Smith, E.G. (2001). Automated Test Results
Processing. Proceedings of the STAREAST`01
Conference, pp. 1–13.

62. Gmeiner, J., Ramler, R., & Haslinger, J. (2015).

Automated testing in the continuous delivery
pipeline: A case study of an online company.
Proceedings of the IEEE 8th International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 1–6. DOI:
10.1109/ICSTW.2015.7107423.

63. Erder, M. & Pureur, P. (2015). Continuous
architecture and continuous delivery. Continuous
Architecture: Sustainable Architecture in an Agile
and Cloud-Centric, Morgan Kaufmann (Elsevier),
pp. 103–129.

64. Vassallo, C., Zampetti, F., Romano, D., Beller, M.,
Panichella, A., Di Penta, M., & Zaidman, A.
(2016). Continuous delivery practices in a large
financial organization. Proceedings of the IEEE
International Conference on Software Maintenance
and Evolution (ICSME), pp. 519–528. DOI: 10.1109/
ICSME.2016.72.

65. Rossi, C., Shibley, E., Su, S., Beck, K., Savor, T.,
& Stumm, M. (2016). Continuous deployment of

mobile software at Facebook (showcase).
Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, pp. 12–23. DOI: 10.1145/
2950290.2994157.

66. Moe, N. B., Cruzes, D., Dybå, T., & Mikkelsen, E.
(2015). Continuous software testing in a globally
distributed project. Proceedings of the IEEE 10th
International Conference on Global Software
Engineering (ICGSE), pp. 130–134. DOI: 10.1109/
ICGSE.2015.24.

67. Campos, J., Fraser, G., Arcuri, A., & Abreu, R.
(2015). Continuous Test Generation on Guava.
International Symposium on Search Based
Software Engineering, Springer, pp. 228–234. DOI:
10.1007/978-3-319-22183-0_16.

68. Madeyski, L. & Kawalerowicz, M. (2013).

Continuous Test-Driven Development - A Novel
Agile Software Development Practice and
Supporting Tool. Proceedings of the 8th
International Conference on Evaluation of Novel
Approaches to Software Engineering, pp. 260–267.

69. Saff, D. & Ernst, M. D. (2005). Continuous testing

in eclipse. Proceedings of the 27th International
Conference on Software Engineering, pp. 668–669.

70. Dolstra, E., Vliegendhart, R., & Pouwelse, J.
(2013). Crowdsourcing GUI tests. Proceedings of

the IEEE 6th International Conference on Software
Testing, Verification and Validation (ICST), pp.
2159–4848. DOI: 10.1109/ICST.2013.44.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1036

ISSN 2007-9737

71. Zachow, M. (2016). Designing an Android
Continuous Delivery pipeline. Software Engineering
(Workshops), pp. 160–163.

72. Eloussi, L. (2015). Determining flaky tests from test
failures. PhD Thesis. University of Illinois at Urbana-
Champaign, Urbana, Illinois.

73. Gotimer, G. & Stiehm, T. (2016). DevOps

Advantages for Testing: Increasing Quality through
Continuous Delivery. CrossTalk Magazine, May/Jun
Ed., pp. 13–18.

74. Marijan, D. & Liaaen, M. (2016). Effect of time

window on the performance of continuous
regression testing. Proceedings of the IEEE
International Conference on Software Maintenance
and Evolution (ICSME), pp. 568–571. DOI: 1109/
ICSME.2016.77.

75. Kim, J., Jeong, H., & Lee, E. (2017). Failure history

data-based test case prioritization for effective
regression test. Proceedings of the Symposium on
Applied Computing, pp. 1409–1415. DOI:10.1145/
3019612.3019831

76. Eyl, M., Reichmann, C., & Müller-Glaser, K.
(2016). Fast feedback from automated tests
executed with the product build. Proceedings of the
International Conference on Software Quality,
Springer, Cham, pp. 199–210. DOI: 10.1007/978-3-
319-27033-3_14.

77. Tilley, S. & Floss, B. (2014). Hard Problems in

Software Testing: Solutions Using Testing as a
Service (TaaS). Synthesis Lectures on Software
Engineering, Vol. 2, No. 1, pp. 1–103.

78. Sinisalo, M. T. (2016). Improving web user
interface test automation in continuous integration.
Master Thesis. Tampere University of Technology.
Finland.

79. Alégroth, E. & Feldt, R. (2014). Industrial

Application of Visual GUI Testing: Lessons
Learned. Continuous Software Engineering,
Springer International Publishing, pp. 127–140, pp.
DOI: 10.1007/978-3-319-11283-1_11.

80. Burgin, M. & Debnath, N. (2010). Intelligent testing

systems. IEEE World Automation Congress (WAC),
pp. 1-6.

81. Penix, J. (2012). Large-scale test automation in the
cloud. Invited Industrial Talk of IEEE 34th
International Conference on Software Engineering
(ICSE), pp. 1122–1122.

82. Busjaeger, B. & Xie, T. (2016). Learning for test
prioritization: an industrial case study. Proceedings
of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software
Engineering, pp. 975–980. DOI: 10.1145/2950290.
2983954.

83. Savchenko, D. I., Radchenko, G. I., & Taipale, O.
(2015). Microservices validation: Mjolnirr platform

case study. Proceedings of the IEEE 38th
International Convention on Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 248–253.

84. Brajnik, G., Baruzzo, A., & Fabbro, S. (2015).

Model-based continuous integration testing of
responsiveness of web applications. Proceedings of
the IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pp. 1–2.
DOI: 10.1109/ICST.2015.7102626.

85. Marijan, D. (2015). Multi-perspective regression

test prioritization for time-constrained environments.
Proceedings of the IEEE International Conference
on Software Quality, Reliability and Security (QRS),
pp. 157–162. DOI: 10.1109/QRS.2015.31.

86. Alotaibi, A. A. & Qureshi, R. J. (2017). Novel

Framework for Automation Testing of Mobile
Applications using Appium. International Journal of
Modern Education and Computer Science, Vol. 9,
No. 2, pp. 34–40. DOI: 10.5815/ijmecs.2017.02.04.

87. Gambi, A., Gorla, A., & Zeller, A. (2017). O! Snap:
Cost-Efficient Testing in the Cloud. Proceedings of
the IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 454–
459. DOI: 10.1109/ICST.2017.51.

88. Alégroth, E. & Feldt, R. (2017). On the long-term

use of visual GUI testing in industrial practice: a
case study. Empirical Software Engineering, Vol.
22, No. 6, pp. 2937–2971.

89. Ramakrishnan, A. & Manjula, R. (2016).

Perceptual Difference for Safer Continuous
Delivery. International Research Journal of
Engineering and Technology (IRJET), Vol. 3, No.
11, pp. 793–798.

90. Erder, M. & Pureur, P. (2015). Principles of

continuous architecture. Continuous Architecture:
Sustainable Architecture in an Agile and Cloud-
Centric, Morgan Kaufmann (Elsevier), pp. 21–37.

91. Hemmati, H., Fang, Z., & Mantyla, M. V. (2015).

Prioritizing manual test cases in traditional and rapid
release environments. Proceedings of the IEEE 8th
International Conference on Software Testing,
Verification and Validation (ICST), pp. 1–10, DOI:
10.1109/ICST.2015.7102602.

92. Saff, D. & Ernst, M.D. (2003). Reducing wasted

development time via continuous testing.
Proceedings of the IEEE 14th International
Symposium on Software Reliability Engineering
(ISSRE), pp. 281–292.

93. Cavalli, A., Maag, S., & Morales, G. (2007).

Regression and Performance Testing of an e-
learning Web application: dotLRN. Proceedings of

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review 1037

ISSN 2007-9737

the 3rd IEEE International Conference on Signal-
Image Technologies and Internet-Based System
(SITIS), pp. 369–376. DOI:10.1109/SITIS.2007.
129.

94. Knauss, E., Staron, M., Meding, W., Söder, O.,
Nilsson, A., & Castell, M. (2015). Supporting

continuous integration by code-churn based test
selection. Proceedings of the Second International
Workshop on Rapid Continuous Software
Engineering, IEEE Press, pp. 19–25.

95. Elbaum, S., Rothermel, G., & Penix, J. (2014).

Techniques for improving regression testing in
continuous integration development environments.
Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, pp. 235–245. DOI:
10.1145/2635868.2635910.

96. Marijan, D., Gotlieb, A., & Sen, S. (2013). Test

case prioritization for continuous regression testing:
An industrial case study. Proceedings of the IEEE
29th International Conference on Software
Maintenance (ICSM), pp. 540–543, DOI: 10.1109/
ICSM.2013.91.

97. Rathod, N. & Surve, A. (2015). Test orchestration

a framework for Continuous Integration and
Continuous deployment. Proceedings of the IEEE
International Conference on Pervasive Computing
(ICPC), pp. 1–5, DOI:10.1109/PERVASIVE.2015.
7087120.

98. Marijan, D. & Liaaen, M. (2017). Test Prioritization

with Optimally Balanced Configuration Coverage.
Proceedings of the IEEE 18th International
Symposium on High Assurance Systems
Engineering (HASE), pp. 100–103. DOI: 10.1109/
HASE.2017.26.

99. Ambler, S. W. (2007). Test-driven development of
relational databases. IEEE Software, Vol. 24, No. 3,
pp. 37–43. DOI: 10.1109/MS.2007.91.

100. Zhang, Z., Tong, Z., & Gao, X. (2010). Testing in

Parallel - A Need for Practical Regression Testing.

Proceedings of the 5th International Conference on
Software Engineering and Systems Development,
Software Systems and Applications, Foundational
and Trigger Technologies (ICSOFT), pp. 344–348.

101. Micco, J. (2017). The state of continuous
integration testing @ google. 11th International
Conference on Sensing Technology (ICST).

102. Marijan, D., Liaaen, M., Gotlieb, A., Sen, S., &
Ieva, C. (2017). TITAN: Test Suite Optimization for

Highly Configurable Software. Proceedings of the
IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp. 524–531.
DOI: 10.1109/ICST.2017.60.

103. Virmani, M. (2015). Understanding DevOps &

bridging the gap from continuous integration to
continuous delivery. Proceedings of the 2015 5th
International Conference on Innovative Computing
Technology (INTECH), pp. 78–82. DOI: 10.1109/
INTECH.2015.7173368.

104. Watanabe, W. M., Fortes, R. P., & Dias, A. L.
(2012). Using acceptance tests to validate
accessibility requirements in RIA. Proceedings of
the International Cross-Disciplinary Conference on
Web Accessibility, Art. 15 DOI: 10.1145/220
07016.2207022.

105. Fagerström, M., Ismail, E. E., Liebel, G., Guliani,
R., Larsson, F., Nordling, K., Knauss, E., &
Pelliccione, P. (2016). Verdict machinery: on the

need to automatically make sense of test results.
Proceedings of the 25th International Symposium
on Software Testing and Analysis, pp. 225–234.
DOI: 10.1145/2931037.2931064.

106. Engblom, J. (2015). Virtual to the (near) end: Using

virtual platforms for continuous integration.
Proceedings of the 52nd Annual Design Automation
Conference, Art. No. 200. DOI: 10.1145/2744769.
2747948.

Article received on 30/08/2017; accepted on 20/10/2017.
Corresponding author is Maximiliano A. Mascheroni.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 1009–1038
doi: 10.13053/CyS-22-3-2794

Maximiliano A. Mascheroni, Emanuel Irrazábal1038

ISSN 2007-9737

