
Parallelization Strategy Using Lustre and MPI for Face Detection
in HPC Cluster: A Case Study

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño,
Jesús Humberto Foullon Peña

Universidad Autónoma de Tamaulipas,
Laboratorio de Optimización y Altas Prestaciones / Facultad de Medicina e Ingeniería en

Sistemas Computacionales de Matamoros,
Mexico

{hcamachoc, jmarino}@docentes.uat.edu.mx, foullon@gmail.com

Abstract. The hardware requirements in object

detection systems make these applications a challenge
in their development given the high consumption of
processing and memory they require for their execution.
The detection of certain characteristics; in the case of a
face, the profile, as well as the lighting, the distances and
the numbers of objects are factors that influence the
proper functioning and performance of these
implementations. This paper presents an alternative to
solve part of this problem through a parallelization
strategy using Luster and MPI-IO for face detection in
the HPC Cluster. We compare Dlib and OpenCV with our
alternative based on the Viola-Jones algorithm called
Facedetector_MPI. The tests were executed in HPC

cluster with 7 nodes (1 metadata server, 2 object storage
server and 2 and 4 lustre clients) and we used images
since 4 to 148 faces. The results showed an important
reduction in the read time of the image file compared
with OpenCV of about 50% when the files are bigger to
the stripe size(>1MB). Better is the increase obtained in
processing around double compared with Dlib in the
large images(>2Mpx) without greatly affecting the hit
rate in the face detection.

Keywords. Lustre, MPI, face detector, Viola-Jones

algorithm, OpenCV, parallel.

1 Introduction

Nowadays, computer object detection systems on
digital images or videos are increasing, thanks to
the multiple applications that can be given to them
in our daily lives, from detecting the type of clothing
of a person, the furniture of a house, even the kind
of pets or plants around us. A case in the detection
of objects is the detection of faces, some

implementations such as those found in [1, 2] can
detect and recognize faces, however their privacy
makes them not easy to study.

During the last years a wide variety of
algorithms in face detection have been developed
and published, among those most cited for their
comparison in performance and accuracy are
those based on the work of Viola-Jones [3] and
neural networks [4]. The algorithm proposed by
Viola-Jones, is based on extracting Haar-like
features that vary in size (width and height).
Depending on the sum of dark or light areas, you
can identify different parts of the face such as eyes,
nose, lips, among others.

Proposals, such as those found in [5], combine
HOG (Histogram of Oriented Gradient) and SVM
(Support Vector Machine) to obtain precision and
speed in the detection of faces. In order to improve
the detection of faces, the use of convolutional
neural networks (CNN) has been implemented [6],
having the detection at an equal speed to the one
based on HOG, nevertheless the limitations
continue because it requires running on a GPU,
given the need for greater computing power
because the size of the image is scaled to be able
to perform detection on small faces.

We must consider that the face detection rate
depends on certain characteristics, that is, if there
is a poor lighting condition, if it moves away, or
even if part of it is obstructed; being factors that
influence the consumption of computational
resources such as processing and memory
becoming an inconvenience for some devices
or equipment.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

ISSN 2007-9737

mailto:hcamachoc

Although part of these requirements can be met
by the implementation of multiple technologies
such as GPUs, this is not available to everyone
because of their high costs.

In the literature, there are some works that
highlight the parallelization of applications. There
is alternatives available are the use of shared
memory programming libraries [7], similar to the
one used by OpenCV [8], where workload is
distributed in the multiple CPU cores of a node
through threads. Another type of parallelization is
the distributed memory in which the libraries of the
message passing interface (MPI) are used [9]; a
program is replicated in multiple nodes of a
computer cluster, and each one of them executes
a specific task where the preliminary result is sent
to the master node to show the final result. The
inclusion of many processors allows operations to
be executed in less time. It can also take
advantage of parallel storage systems, as is the
case of[10, 11], these systems distribute the data
in the multiple storage devices of a cluster in order
to get much faster I/O operations. However, most
of the works found related to face detection
implement the parallelism at the level of cpu or gpu
using a single node.

In this paper, we present a parallel strategy for
face detection on an HPC cluster. Our proposal
uses the OpenCV open source computer vision
and machine learning library [12], on which an
optimization alternative based on the Viola-Jones
algorithm was developed. This motivates us and
allows us to establish the guideline to take
advantage of the existing hardware, taking to a
greater level the locality of data on a computer
cluster through the Lustre file system, as well as
reducing the execution times in the detection of
faces through distributed processing by the
implementation of the MPI message passing
interface. Therefore, we try to answer the following
research question:

It is possible to solve the requirements of
memory and processing in the detection of faces
exploiting the existing hardware through the
increase of parallelism without compromising the
hit rate? The rest of this article is organized as
follows: Section 2 includes the data and methods
used. Section 3 presents and discusses the results
found, and, finally, in section 4 we present
the conclusions.

2 Data and Methods

The task of detecting a face begins through access
to the image that is distributed in small pieces in
the Lustre. Then once the image is accessed, the
master or principal node (rank 0) has the task of
dispersing fragments of the image in the
processing nodes through the MPI. Each of these
processes executes our implementation
(Facedetector_MPI). Finally, face detection is
carried out and the result is sent back to the
principal node, which is responsible of showing the
total number of faces detected. Our work consists
of 4 main steps: the implementation of an HPC
Cluster, the data location, the operation of
Facedetector_MPI, and the detection of faces.

2.1 HPC Cluster Architecture

The first step is the implementation of an HPC
cluster. Initially it was built with the following
characteristics: 7 nodes with Intel Core i7
processors at 3.6 Ghz, 12GB of DDR4 memory,
SATA III hard disk at 2 TB at 7200 RPM and
average reading speed at 156 MB/s, a
GigabitEthernet network card and a 24-port Gigabit
Ethernet switch. CentOS version 7 was
implemented as the operating system. As well as
the xfs local file system and the Lustre parallel file
system in conjunction with ext4 (figure 1)

The xfs was used for the cases where the CPU
implementations that by default come with the Dlib
[5] and OpenCV frameworks are compared; It is
noteworthy that here there is no modification to the
applications, so the image is stored and processed
in a single node, thus preventing access to remote
servers.

Part of our parallel strategy is the data location,
therefore we define the use of Lustre as a parallel
file system and likewise, a collection of images1 of
multiple sizes was used. The following
configuration was implemented:

 1 Metadata and Management Server
(MDS/MGS).

 2 Object Storage Server (OSSs)

 1, 2 and 4 Clients

 Stripe Size of 1MB.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño, Jesús Humberto Foullon Peña190

ISSN 2007-9737

2.2 Data Location

In this second step, the goal is to distribute the
image across multiple data servers. Lustre
operations are implemented using a client/server
model where clients send Input/Output operation
initially to metadata servers to obtain the

parameters of the objects (offset, size, id and
others) as well as the type of operation (write/read)
to be executed.

If a write operation is requested, lustre allows
the image located in the client's local buffer to be
sent in parallel across multiple object storage
targets (OSTs) in a round-robin fashion (Figure 2).

Fig. 1. HPC Cluster Architecture

Fig. 2. Write image file

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Parallelization Strategy Using Lustre and MPI for Face Detection in HPC Cluster: A Case Study 191

ISSN 2007-9737

That is, an image can be divided into multiple
pieces (1) that will be sent and stored in different
OSTs within the luster system.

Once the image is located on disk, it can be
accessed through a read operation directly from
the OSTs:

𝑐ℎ𝑢𝑛𝑘_𝑖𝑚𝑔(𝑥) =
𝑆𝑖𝑧𝑒𝑖𝑚𝑔

𝑈𝑛𝑖𝑡𝑠𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔
. (1)

2.3 Facedetector_MPI Description

a. Reading Image

The third step aims to describe the application
developed. Our tool is responsible for carrying out
an operation of reading the image to the object
servers, this request is made in grayscale (figure
3) regardless of whether it is color or not. It is
noteworthy that we chose to perform the operation
using a single 8-bit channel instead of the three
channels (RGB) used by other tools; since it allows
us to avoid any inconvenience when manipulating
the pixels, in addition to reducing the access time
to it. Remember that an image is just an array
where each cell represents a pixel, so reading the
image is saved in a variable of that type.

b. Scaling Image

Once the image is loaded in gray scale, the size is
extracted in pixels (width and height).
Subsequently, one of the contributions that
improve our tool is the implementation of a function
called scalar_img(). This function is responsible for
scaling the image to a factor of 2 when the image
is small (≤1920 and ≤1080).

This allows the face detector to search for faces
around 30x30 pixels allowing to reduce the search
time and improving the level of accuracy. The
second occurs when the images are of a larger
size (≥4096 X ≥2160), then a factor of 0.5 is used,
which will reduce the image to 50% of its original
size. If none of the above conditions are met, the
image remains unchanged. A look at the scaling
algorithm can be seen in the algorithm 1.

c. Image Dispersion

A further contribution on this work is to allow an
increase in the parallelism at the process level. The

use of the message passing interface library is
implemented for this matter; that is, the application
is replicated on the multiple processing nodes.

The division of the image (size_img/
num_procs) is given horizontally (figure 4a). This is
due to the fact that such division allows to maintain
a greater number of traits or particular
characteristics such as the eyes and nose of a face
compared to a vertical division (figure 4b), where
the features or signs of the faces can be affected
by the cuts of the image (figure 5), which is
translated into an increase of false negatives. In
other words the faces are not detected even when
they are present so the success rate is in the
detection of faces is reduced.

A scatter routine (figure 6) is used to designated
root process (lustre client 01) sending data to all
lustre clients (processes) in a communicator, in
order to sends chunks of an image to each node to
process the chunk of the received image.

2.4 Face Detection

In this step, the objective is to explain how face
detection is carried out. It takes advantage of the
multi-threading offered by MPI, a big advantage of
MPI is the ability to specify noncontiguous
accesses in memory, so the parallelization is even

The algorithm 1. scalar_img description

1. scalar_img(image)
2. {
3. /*small image 1920X1080*/
4. if(width<=1920 and
5. height<=1080)
6. {
7. resize(image size factor of
8. 2 in W and H)
9. } /*big image*/
10. else if(width>=4096 and
11. height>2160)
12. {
13. resize(image size factor of 0.5
14. in W and H)
15. }else{
16. /*original size*/
17. Return image;
18. }
19. return image;
20. }

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño, Jesús Humberto Foullon Peña192

ISSN 2007-9737

greater. Each of the nodes executes the face
detection algorithm on the piece of image that was
assigned to it.

The Haar-like feature classifier was used for
front faces. It is noteworthy that such a classifier is
included in the OpenCV implementation and was
previously trained with multiple images.

It should be noted that the process for training
a classifier is that the sample images called
positive include these characteristics, as well as
different pixel sizes.

In addition, to complement the training it is
necessary to use images that do not contain faces.
For the extraction of the Haar characteristics, each
of these has a unique value that is obtained by
subtracting the sum of the light parts from the sum
of the dark parts, with which eyes, nose and lips
can be identified.

To reduce the computational cost required, an
integral image [3] is implemented, like Crow's
summed area table [13]. Wherein, the value of i (x,
y) in the summed area table is the sum of all the
pixels to the left and above (x, y), see equation (2):

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(x´, y´) .
𝑥´≤ 𝑥
𝑦´≤ 𝑦

(2)

After loading the classifier and generating the
matrix where the image is stored, a new vector is
created where the detected faces will be stored. In
order to calculate the minimum requirements to
preserve the possible faces detected, the minimum
and maximum size required (30x30) is defined.
The algorithm detects faces of different sizes on
the image and draws a box on the detected face.

A face outside the indicated parameters is
ignored. The preliminary result is sent to the
master or main node to show the result (figure 7)
through a gather routine which takes elements
from each clients (processes) and gathers them to
the root process. Subsequently these are ordered
by the rank of the process that each of them
received.

The results obtained will show the total number
of faces detected (FD), as well as the possible false
positives (FP) and false negatives (FN) of each
image; This allows us to calculate the success rate
(HR), using the following expressions (3, 4), where
A is the number of successes:

Fig. 3. Read Image file

a) b)

Fig. 4. Image dispersion

Fig. 5. Division of a face

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Parallelization Strategy Using Lustre and MPI for Face Detection in HPC Cluster: A Case Study 193

ISSN 2007-9737

𝐴 = 𝐹𝐷 − 𝐹𝑃, (3)

𝐻𝑅 =
A

TF
. (4)

3 Results and Discussion

The first objective has been to justify the inclusion
of lustre to increase the location of data on remote
servers. Thus, our second objective was to
promote parallel processing on the multiple nodes
of an HPC cluster in order to obtain results in face
detection in a shorter time and without reducing the
effectiveness rate.

To obtain the first results, in the case of Dlib and
OpenCV, a single node running on the local XFS
file system was used. In Facedetector_MPI, the
Lustre configuration of 1 metadata server, 2 data
servers, 1, 2 to 4 clients, as well as a 1MB stripe
size was used. The samples of images used
contain different file sizes for reading operations
we consider accesses from 138KB to 20MB. To
test the results, the average of 5 executions per
image was obtained.

3.1 Image Read Time Performance

In the executions made in xfs (Dlib and OpenCV)
the client accesses his local filesystem; There is
therefore no remote access. In contrast, in
executions in Lustre (Facedetector_MPI), the client
accesses two remote servers (table 1).

As you can see the reading accesses with
Lustre (figure 8 and 9) in the case of small files
(<1MB) present a significant penalty against local
accesses, so there is no significant improvement.
The results shown in the figures do not reflect the
advantage of accessing multiple servers in parallel.
It should be noted that in the tests performed the
servers only attend to the client's requests, so they
are not running any other application.

Therefore, there is the conviction that to
increase the performance to a better extent the
implementation of a greater number of servers is
necessary and this is noticed when the image size
is larger than the stripping unit (1MB).

An increase in bandwidth is seen; This is due to
the distribution of the image on 2 servers, since we

will have multiple processes in parallel,
simultaneously accessing part of the image,
reducing access times by approximately 50%
compared to the implementation in OpenCV and

Fig. 6. Scatter routine

Fig. 7. Gather routine

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño, Jesús Humberto Foullon Peña194

ISSN 2007-9737

being similar in Dlib although the latter was
optimized at a level 3 (-O3).

Better still is the fact of being able to manage
an image with different clients, because each one
of them can access a part of the image managing
to increase the parallelism even more and
consequently a reduction in access times.

3.2 Face Detector Algorithm Performance

Table (2) shows the average execution times (5
per image) obtained in the face detection
algorithms that comes by default in Dlib and
OpenCV, as well as the results of the modified
algorithm in Facedetector_MPI for 2 and 4 clients.

Table 1. image read times

 Times (miliseconds)

IMAGE FILE SIZE DLIB OPENCV
FACEDETECTOR_M

PI_2N

gpl01 138KB 4.4 15.55 14.61

gpl02 170KB 12.8 25.90 26.71

isum 207KB 5 17.98 12.00

gpl03 456KB 22.4 50.24 48.25

student01 636KB 10.6 8.55 14.50

student02 2.67MB 53.4 41.49 50.57

graduation 3.72MB 211.8 557.77 226.04

astro 6.84MB 389.4 1136.9 420.7

stair 19.9MB 376 1004.43 506.38

Fig. 8. Throughtput

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Parallelization Strategy Using Lustre and MPI for Face Detection in HPC Cluster: A Case Study 195

ISSN 2007-9737

Fig. 9. Latency

Fig. 10. Run time of face detector algorithm

 Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño, Jesús Humberto Foullon Peña196

ISSN 2007-9737

When analyzing the results, we realize that
there are some differences in the execution times
of the algorithm. Figure 10 shows how the
operations for smaller images in some cases are
similar for the 3 implementations.

However, as the image grows, it is possible to
appreciate how the execution time is considerably
reduced in Facedetector_MPI.

This increase in performance is achieved
thanks to the interaction of multiple processes that
execute in parallel the algorithm of face detection
on the assigned piece of image. You might think
that this increase in benefits compromises the
success rate of the face detection algorithm,
however this does not happen, and it is here that
the implementation of scaling becomes relevant.

3.3 Hit Rate

We take some final measurements and add a
comparison between Dlib, OpenCV and
Facedetector_MPI with 2 and 4 clients. Table (3)
shows the lowest number of faces in the images
(TF) (4 to 128), as well as the results obtained in:
total number of faces detected (FD), false positives
(FP) and false negatives (FN) of each of the
implementations.

If we look at the data, we can realize that even
in some cases, the number of faces detected is
greater (FP) with respect to TF and this in the case
of OpenCV adds more time in the execution of the
face detection algorithm.

This is because some characteristics have
been found within the image that are interpreted as

Table 2. Run time

IMAGE
GEOMETRY

(PIXELS)
DLIB OPENCV

FACEDETECTOR

_MPI_NP2

FACEDETECTOR

_MPI_NP4

gpl01 960x651 247.2 271.67 572.33 480.30

isum 1008x756 292.2 259.29 528.55 464.24

student01 1024x369 149 162.28 289.39 222.03

gpl03 1280x1033 507.2 413.21 955.15 838.196

gpl02 1280x1652 800 688.58 412.338 354.466

student02 2048x1152 885.6 704.19 396.44 327.31

graduation 8204x3132 9653.8 9078.03 1344 1063.79

stair 5963x4608 10319.2 8169.36 1380.97 1209.41

astro 8048x6070 18483.2 13752.8 1833.57 1608.74

Table 3. Number faces detect

 Dlib OpenCV Facedetector

mpi_n2

Facedetector

mpi_n4

 Total Faces FD FP FN FD FP FN FD FP FN FD FP FN

gpl01 4 2 0 2 3 0 1 3 0 1 4 0 0

gpl02 12 7 0 5 10 1 3 7 0 5 8 0 4

gpl03 15 2 0 13 6 0 9 13 1 3 11 0 4

student01 17 17 0 0 17 0 0 16 0 1 11 0 6

student02 17 17 0 0 17 0 0 16 0 1 15 0 2

astro 17 17 0 0 21 4 0 17 0 0 17 0 0

stair 18 18 0 0 26 8 0 18 0 0 14 1 5

isum 62 10 0 52 23 0 39 60 0 2 60 0 2

graduation. 148 149 1 0 163 16 1 149 2 1 125 0 23

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Parallelization Strategy Using Lustre and MPI for Face Detection in HPC Cluster: A Case Study 197

ISSN 2007-9737

faces, but they are not. To prevent this from
happening in our implementation, we take
advantage of the previously designed image
scaling in order to better identify the characteristics
of the faces and thus reduce the number of false
detections.

Figure 11 clearly shows how the hit rate is
similar in 5 (student01, student02, astro, stair and
graduation) of the 9 cases having a hit rate
between 94 and 100% over the 3 implementations,
However, Facedetctor_MPI it is superior (gpl01,
gpl03, isum) about 40 to 60% effective in 3 cases
and only one (gpl02) shows a 20% reduction
compared to the other implementations.

Although the results show certain differences,
we can see how the added parallelism strategy
improves performance and exploits existing
computing resources, without compromising the
effectiveness of face detection on an HPC cluster.

6 Conclusions

The work done in this investigation define several
important points. Since the study of different

algorithms for face detection, until to find a better
solution in the processing of images.

A limitation that we find to image processing is
its high consumption in computational resources,
leaving low-performance teams without the
possibility of being able to efficiently execute
this task.

The tests performed have allowed us to see the
superiority that exists when using a large image
since the results improve significantly thanks to the
implementation of a greater number of OSTs, as
well as the use of multiple lustre clients and the
MPI interface.

Once the parallelization strategy for face
detection on HPC cluster is made, we can
conclude that the results are similar or in some
cases better to the others implementations that do
not exploit the parallelism to a higher level.

The reuse existing hardware is presented as a
less expensive solution compared to the
acquisition of new equipment and the
implementation of GPUs.

Finally, we hope that this work helps to promote
the use of HPC clusters through the comparison of
different parallelization strategies

Fig. 11. Hit rate

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño, Jesús Humberto Foullon Peña198

ISSN 2007-9737

Acknowledgements

We thank the Programa para el Desarrollo
Profesional Docente (PRODEP) for the support
granted mentioned in the Official Letter No. 511-
6/17/8212, and the Universidad Autónoma de
Tamaulipas - Facultad de Medicina e Ingeniería en
Sistemas Computacionales de Matamoros, all of
them for providing the means to carry out this work.

References

1. Schroff, F., Kalenichenko, D., & Philbin, J.
(2015). FaceNet: A Unified Embedding for Face
Recognition and Clustering. IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition, pp. 815–823.

2. Taigman, Y., Yang, M., Ranzato, M., & Wolf, L.
(2014). DeepFace: Closing the Gap to Human-
Level Performance in Face Verification. IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 1701–1708.

3. Viola, P. & Jones, M. (2001). Rapid object

detection using a boosted cascade of simple
features. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Vol. 1,

pp. 1–9. DOI: 10.1109/CVPR.2001.990517.

4. Rowley, H.A., Baluja, S., & Kanade, T. (1998).

Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 20, No. 1, pp. 23–38. DOI:
10.1109/34.655647.

5. King, D.E. (2009). Dlib-ml: A machine learning

toolkit. The Journal of Machine Learning Research,
Vol. 10, pp. 1755–1758.

6. Yu, S., Jia, S., & Xu, C. (2017). Convolutional

neural networks for hyperspectral image
classification. Neurocomputing, Vol. 219, pp.
88– 98.

7. Chang, C.H., Lu, C.W., Yang, C.T., & Chang, T.C.
(2016). An approach of performance comparisons

with OpenMP and CUDA parallel programming on
multicore systems: OpenMP and CUDA
performance comparisons on multicore systems.
Concurrency and Computation: Practice and
Experience, Vol. 28, No. 16, pp. 4230–4245. DOI:
10.1002/cpe.3829.

8. Iordan, C., Jahre, M., & Natvig, L. (2015). Tuning
the victim selection policy of Intel TBB. Journal of
Systems Architecture, Vol. 61, No. 10, pp. 58–591.
DOI: 10.1016/j.sysarc.2015.07.004.

9. Dinan, J., Balaji, P., Buntinas, D., Goodell, D.,
Gropp, W., & Thakur, R. (2016). An

implementation and evaluation of the MPI 3.0 one‐
sided communication interface. Concurrency and
Computation: Practice and Experience, Vol. 28,
No. 17, pp. 4385–4404. DOI: 10.1002/cpe.3758.

10. Wang, L., Ma, Y., Zomaya, A.Y., Ranjan, R., &
Chen, D. (2015). A parallel file system with

application-aware data layout policies for massive
remote sensing image processing in digital earth.
IEEE Transactions on Parallel and Distributed
Systems, Vol. 26, No. 6, pp. 1497–1508.

DOI: 10.1109/TPDS.2014.2322362.

11. Moore, M., Farrell, P., & Cernohous, B. (2018).

Lustre lockahead: Early experience and
performance using optimized locking. Concurrency
and Computation: Practice and Experience, Vol. 30
No. 1, pp. 1–14. DOI: 10.1002/cpe.4332.

12. Pulli, K., Baksheev, A., Kornyakov, K., &
Eruhimov, V. (2012). Realtime computer vision
with OpenCV. Communications of the ACM, Vol. 55,
No. 6, pp. 61–69. DOI: 10.1145/2184319.2184337.

13. Crow, F.C. (1984). Summed-Area tables for texture
mapping. ACM SIGGRAPH Computer Graphics,

Vol. 18, No. 3, pp. 207–212.
DOI: 10.1145/800031.808600.

Article received on 01/11/2018; accepted on 02/10/2019.
Corresponding author is Hugo Eduardo Camacho Cruz.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Parallelization Strategy Using Lustre and MPI for Face Detection in HPC Cluster: A Case Study 199

ISSN 2007-9737

