
Parallelization Strategy Using Lustre and MPI for Face Detection  
in HPC Cluster: A Case Study 

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño, 
Jesús Humberto Foullon Peña 

Universidad Autónoma de Tamaulipas,  
Laboratorio de Optimización y Altas Prestaciones / Facultad de Medicina e Ingeniería en 

Sistemas Computacionales de Matamoros, 
Mexico 

{hcamachoc, jmarino}@docentes.uat.edu.mx, foullon@gmail.com  

Abstract. The hardware requirements in object 

detection systems make these applications a challenge 
in their development given the high consumption of 
processing and memory they require for their execution. 
The detection of certain characteristics; in the case of a 
face, the profile, as well as the lighting, the distances and 
the numbers of objects are factors that influence the 
proper functioning and performance of these 
implementations. This paper presents an alternative to 
solve part of this problem through a parallelization 
strategy using Luster and MPI-IO for face detection in 
the HPC Cluster. We compare Dlib and OpenCV with our 
alternative based on the Viola-Jones algorithm called 
Facedetector_MPI. The tests were executed in HPC 

cluster with 7 nodes (1 metadata server, 2 object storage 
server and 2 and 4 lustre clients) and we used images 
since 4 to 148 faces. The results showed an important 
reduction in the read time of the image file compared 
with OpenCV of about 50% when the files are bigger to 
the stripe size(>1MB). Better is the increase obtained in 
processing around double compared with Dlib in the 
large images(>2Mpx) without greatly affecting the hit 
rate in the face detection. 

Keywords. Lustre, MPI, face detector, Viola-Jones 

algorithm, OpenCV, parallel. 

1 Introduction 

Nowadays, computer object detection systems on 
digital images or videos are increasing, thanks to 
the multiple applications that can be given to them 
in our daily lives, from detecting the type of clothing 
of a person, the furniture of a house, even the kind 
of pets or plants around us. A case in the detection 
of objects is the detection of faces, some 

implementations such as those found in [1, 2] can 
detect and recognize faces, however their privacy 
makes them not easy to study.  

During the last years a wide variety of 
algorithms in face detection have been developed 
and published, among those most cited for their 
comparison in performance and accuracy are 
those based on the work of Viola-Jones [3] and 
neural networks [4]. The algorithm proposed by 
Viola-Jones, is based on extracting Haar-like 
features that vary in size (width and height). 
Depending on the sum of dark or light areas, you 
can identify different parts of the face such as eyes, 
nose, lips, among others.  

Proposals, such as those found in [5], combine 
HOG (Histogram of Oriented Gradient) and SVM 
(Support Vector Machine) to obtain precision and 
speed in the detection of faces. In order to improve 
the detection of faces, the use of convolutional 
neural networks (CNN) has been implemented [6], 
having the detection at an equal speed to the one 
based on HOG, nevertheless the limitations 
continue because it requires running on a GPU, 
given the need for greater computing power 
because the size of the image is scaled to be able 
to perform detection on small faces.  

We must consider that the face detection rate 
depends on certain characteristics, that is, if there 
is a poor lighting condition, if it moves away, or 
even if part of it is obstructed; being factors that 
influence the consumption of computational 
resources such as processing and memory 
becoming an inconvenience for some devices 
or equipment.  
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Although part of these requirements can be met 
by the implementation of multiple technologies 
such as GPUs, this is not available to everyone 
because of their high costs. 

In the literature, there are some works that 
highlight the parallelization of applications. There 
is alternatives available are the use of shared 
memory programming libraries [7], similar to the 
one used by OpenCV [8], where workload is 
distributed in the multiple CPU cores of a node 
through threads. Another type of parallelization is 
the distributed memory in which the libraries of the 
message passing interface (MPI) are used [9]; a 
program is replicated in multiple nodes of a 
computer cluster, and each one of them executes 
a specific task where the preliminary result is sent 
to the master node to show the final result. The 
inclusion of many processors allows operations to 
be executed in less time. It can also take 
advantage of parallel storage systems, as is the 
case of[10, 11], these systems distribute the data 
in the multiple storage devices of a cluster in order 
to get much faster I/O operations. However, most 
of the works found related to face detection 
implement the parallelism at the level of cpu or gpu 
using a single node.  

In this paper, we present a parallel strategy for 
face detection on an HPC cluster. Our proposal 
uses the OpenCV open source computer vision 
and machine learning library [12], on which an 
optimization alternative based on the Viola-Jones 
algorithm was developed. This motivates us and 
allows us to establish the guideline to take 
advantage of the existing hardware, taking to a 
greater level the locality of data on a computer 
cluster through the Lustre file system, as well as 
reducing the execution times in the detection of 
faces through distributed processing by the 
implementation of the MPI message passing 
interface. Therefore, we try to answer the following 
research question: 

It is possible to solve the requirements of 
memory and processing in the detection of faces 
exploiting the existing hardware through the 
increase of parallelism without compromising the 
hit rate? The rest of this article is organized as 
follows: Section 2 includes the data and methods 
used. Section 3 presents and discusses the results 
found, and, finally, in section 4 we present 
the conclusions. 

2 Data and Methods 

The task of detecting a face begins through access 
to the image that is distributed in small pieces in 
the Lustre. Then once the image is accessed, the 
master or principal node (rank 0) has the task of 
dispersing fragments of the image in the 
processing nodes through the MPI. Each of these 
processes executes our implementation 
(Facedetector_MPI). Finally, face detection is 
carried out and the result is sent back to the 
principal node, which is responsible of showing the 
total number of faces detected. Our work consists 
of 4 main steps: the implementation of an HPC 
Cluster, the data location, the operation of 
Facedetector_MPI, and the detection of faces. 

2.1 HPC Cluster Architecture 

The first step is the implementation of an HPC 
cluster. Initially it was built with the following 
characteristics: 7 nodes with Intel Core i7 
processors at 3.6 Ghz, 12GB of DDR4 memory, 
SATA III hard disk at 2 TB at 7200 RPM and 
average reading speed at 156 MB/s, a 
GigabitEthernet network card and a 24-port Gigabit 
Ethernet switch. CentOS version 7 was 
implemented as the operating system. As well as 
the xfs local file system and the Lustre parallel file 
system in conjunction with ext4 (figure 1) 

The xfs was used for the cases where the CPU 
implementations that by default come with the Dlib 
[5] and OpenCV frameworks are compared; It is 
noteworthy that here there is no modification to the 
applications, so the image is stored and processed 
in a single node, thus preventing access to remote 
servers.  

Part of our parallel strategy is the data location, 
therefore we define the use of Lustre as a parallel 
file system and likewise, a collection of images1 of 
multiple sizes was used. The following 
configuration was implemented: 

 1 Metadata and Management Server 
(MDS/MGS). 

 2 Object Storage Server (OSSs) 

 1, 2 and 4 Clients 

 Stripe Size of 1MB. 

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 189–199
doi: 10.13053/CyS-24-1-3053

Hugo Eduardo Camacho Cruz, Julio Cesar González Mariño, Jesús Humberto Foullon Peña190

ISSN 2007-9737



2.2 Data Location  

In this second step, the goal is to distribute the 
image across multiple data servers. Lustre 
operations are implemented using a client/server 
model where clients send Input/Output operation 
initially to metadata servers to obtain the 

parameters of the objects (offset, size, id and 
others) as well as the type of operation (write/read) 
to be executed.  

If a write operation is requested, lustre allows 
the image located in the client's local buffer to be 
sent in parallel across multiple object storage 
targets (OSTs) in a round-robin fashion (Figure 2). 

 

Fig. 1. HPC Cluster Architecture 

 

Fig. 2. Write image file 
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That is, an image can be divided into multiple 
pieces (1) that will be sent and stored in different 
OSTs within the luster system. 

Once the image is located on disk, it can be 
accessed through a read operation directly from 
the OSTs: 

𝑐ℎ𝑢𝑛𝑘_𝑖𝑚𝑔(𝑥) =
𝑆𝑖𝑧𝑒𝑖𝑚𝑔

𝑈𝑛𝑖𝑡𝑠𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔
. (1) 

2.3 Facedetector_MPI Description  

a. Reading Image 

The third step aims to describe the application 
developed. Our tool is responsible for carrying out 
an operation of reading the image to the object 
servers, this request is made in grayscale (figure 
3) regardless of whether it is color or not. It is 
noteworthy that we chose to perform the operation 
using a single 8-bit channel instead of the three 
channels (RGB) used by other tools; since it allows 
us to avoid any inconvenience when manipulating 
the pixels, in addition to reducing the access time 
to it. Remember that an image is just an array 
where each cell represents a pixel, so reading the 
image is saved in a variable of that type. 

b. Scaling Image 

Once the image is loaded in gray scale, the size is 
extracted in pixels (width and height). 
Subsequently, one of the contributions that 
improve our tool is the implementation of a function 
called scalar_img(). This function is responsible for 
scaling the image to a factor of 2 when the image 
is small (≤1920 and ≤1080).  

This allows the face detector to search for faces 
around 30x30 pixels allowing to reduce the search 
time and improving the level of accuracy. The 
second occurs when the images are of a larger 
size (≥4096 X ≥2160), then a factor of 0.5 is used, 
which will reduce the image to 50% of its original 
size. If none of the above conditions are met, the 
image remains unchanged. A look at the scaling 
algorithm can be seen in the algorithm 1. 

c. Image Dispersion 

A further contribution on this work is to allow an 
increase in the parallelism at the process level. The 

use of the message passing interface library is 
implemented for this matter; that is, the application 
is replicated on the multiple processing nodes.  

The division of the image (size_img/ 
num_procs) is given horizontally (figure 4a). This is 
due to the fact that such division allows to maintain 
a greater number of traits or particular 
characteristics such as the eyes and nose of a face 
compared to a vertical division (figure 4b), where 
the features or signs of the faces can be affected 
by the cuts of the image (figure 5), which is 
translated into an increase of false negatives. In 
other words the faces are not detected even when 
they are present so the success rate is in the 
detection of faces is reduced. 

A scatter routine (figure 6) is used to designated 
root process (lustre client 01) sending data to all 
lustre clients (processes) in a communicator, in 
order to sends chunks of an image to each node to 
process the chunk of the received image. 

2.4 Face Detection 

In this step, the objective is to explain how face 
detection is carried out. It takes advantage of the 
multi-threading offered by MPI, a big advantage of 
MPI is the ability to specify noncontiguous 
accesses in memory, so the parallelization is even 

The algorithm 1. scalar_img description 

1.    scalar_img(image) 
2.    {              
3.     /*small image 1920X1080*/ 
4.     if(width<=1920 and  
5.     height<=1080)  
6.     { 
7.    resize(image size factor of  
8.     2 in W and H) 
9.      } /*big image*/  
10.      else if(width>=4096 and  
11.               height>2160)  
12.               { 
13.       resize(image size factor of 0.5                           
14.               in W and H) 
15.               }else{ 
16.                      /*original size*/ 
17.                      Return image; 
18.                }  
19.   return image; 
20.  } 
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greater. Each of the nodes executes the face 
detection algorithm on the piece of image that was 
assigned to it.  

The Haar-like feature classifier was used for 
front faces. It is noteworthy that such a classifier is 
included in the OpenCV implementation and was 
previously trained with multiple images.  

It should be noted that the process for training 
a classifier is that the sample images called 
positive include these characteristics, as well as 
different pixel sizes.  

In addition, to complement the training it is 
necessary to use images that do not contain faces. 
For the extraction of the Haar characteristics, each 
of these has a unique value that is obtained by 
subtracting the sum of the light parts from the sum 
of the dark parts, with which eyes, nose and lips 
can be identified.  

To reduce the computational cost required, an 
integral image [3] is implemented, like Crow's 
summed area table [13]. Wherein, the value of i (x, 
y) in the summed area table is the sum of all the 
pixels to the left and above (x, y), see equation (2): 

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(x´, y´)  .             
𝑥´≤ 𝑥
𝑦´≤ 𝑦

 
(2) 

After loading the classifier and generating the 
matrix where the image is stored, a new vector is 
created where the detected faces will be stored. In 
order to calculate the minimum requirements to 
preserve the possible faces detected, the minimum 
and maximum size required (30x30) is defined. 
The algorithm detects faces of different sizes on 
the image and draws a box on the detected face. 

A face outside the indicated parameters is 
ignored. The preliminary result is sent to the 
master or main node to show the result (figure 7) 
through a gather routine which takes elements 
from each clients (processes) and gathers them to 
the root process. Subsequently these are ordered 
by the rank of the process that each of them 
received. 

The results obtained will show the total number 
of faces detected (FD), as well as the possible false 
positives (FP) and false negatives (FN) of each 
image; This allows us to calculate the success rate 
(HR), using the following expressions (3, 4), where 
A is the number of successes: 

 

Fig. 3. Read Image file 

 
a)    b) 

Fig. 4. Image dispersion 

 

Fig. 5. Division of a face 
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𝐴 = 𝐹𝐷 − 𝐹𝑃,                   (3) 

𝐻𝑅 =
A

TF
.                             (4) 

3 Results and Discussion 

The first objective has been to justify the inclusion 
of lustre to increase the location of data on remote 
servers. Thus, our second objective was to 
promote parallel processing on the multiple nodes 
of an HPC cluster in order to obtain results in face 
detection in a shorter time and without reducing the 
effectiveness rate.  

To obtain the first results, in the case of Dlib and 
OpenCV, a single node running on the local XFS 
file system was used. In Facedetector_MPI, the 
Lustre configuration of 1 metadata server, 2 data 
servers, 1, 2 to 4 clients, as well as a 1MB stripe 
size was used. The samples of images used 
contain different file sizes for reading operations 
we consider accesses from 138KB to 20MB. To 
test the results, the average of 5 executions per 
image was obtained. 

3.1 Image Read Time Performance  

In the executions made in xfs (Dlib and OpenCV) 
the client accesses his local filesystem; There is 
therefore no remote access. In contrast, in 
executions in Lustre (Facedetector_MPI), the client 
accesses two remote servers (table 1). 

As you can see the reading accesses with 
Lustre (figure 8 and 9) in the case of small files 
(<1MB) present a significant penalty against local 
accesses, so there is no significant improvement. 
The results shown in the figures do not reflect the 
advantage of accessing multiple servers in parallel. 
It should be noted that in the tests performed the 
servers only attend to the client's requests, so they 
are not running any other application. 

Therefore, there is the conviction that to 
increase the performance to a better extent the 
implementation of a greater number of servers is 
necessary and this is noticed when the image size 
is larger than the stripping unit (1MB).  

An increase in bandwidth is seen; This is due to 
the distribution of the image on 2 servers, since we 

will have multiple processes in parallel, 
simultaneously accessing part of the image, 
reducing access times by approximately 50% 
compared to the implementation in OpenCV and 

 

Fig. 6. Scatter routine 

 

Fig. 7. Gather routine 
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being similar in Dlib although the latter was 
optimized at a level 3 (-O3). 

Better still is the fact of being able to manage 
an image with different clients, because each one 
of them can access a part of the image managing 
to increase the parallelism even more and 
consequently a reduction in access times. 

3.2 Face Detector Algorithm Performance 

Table (2) shows the average execution times (5 
per image) obtained in the face detection 
algorithms that comes by default in Dlib and 
OpenCV, as well as the results of the modified 
algorithm in Facedetector_MPI for 2 and 4 clients.  

Table 1. image read times  

  Times (miliseconds) 

IMAGE FILE SIZE DLIB OPENCV 
FACEDETECTOR_M

PI_2N 

gpl01 138KB 4.4 15.55 14.61 

gpl02 170KB 12.8 25.90 26.71 

isum  207KB 5 17.98 12.00 

gpl03 456KB 22.4 50.24 48.25 

student01 636KB 10.6 8.55 14.50 

student02 2.67MB 53.4 41.49 50.57 

graduation  3.72MB 211.8 557.77 226.04 

astro  6.84MB 389.4 1136.9 420.7 

stair 19.9MB 376 1004.43 506.38 

 

Fig. 8. Throughtput 
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Fig. 9. Latency 

 

Fig. 10. Run time of face detector algorithm 
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When analyzing the results, we realize that 
there are some differences in the execution times 
of the algorithm. Figure 10 shows how the 
operations for smaller images in some cases are 
similar for the 3 implementations.  

However, as the image grows, it is possible to 
appreciate how the execution time is considerably 
reduced in Facedetector_MPI. 

This increase in performance is achieved 
thanks to the interaction of multiple processes that 
execute in parallel the algorithm of face detection 
on the assigned piece of image. You might think 
that this increase in benefits compromises the 
success rate of the face detection algorithm, 
however this does not happen, and it is here that 
the implementation of scaling becomes relevant. 

3.3 Hit Rate 

We take some final measurements and add a 
comparison between Dlib, OpenCV and 
Facedetector_MPI with 2 and 4 clients. Table (3) 
shows the lowest number of faces in the images 
(TF) (4 to 128), as well as the results obtained in: 
total number of faces detected (FD), false positives 
(FP) and false negatives (FN) of each of the 
implementations.  

If we look at the data, we can realize that even 
in some cases, the number of faces detected is 
greater (FP) with respect to TF and this in the case 
of OpenCV adds more time in the execution of the 
face detection algorithm.  

This is because some characteristics have 
been found within the image that are interpreted as 

Table 2. Run time  

IMAGE 
GEOMETRY  

(PIXELS) 
DLIB OPENCV 

FACEDETECTOR 

_MPI_NP2 

FACEDETECTOR 

_MPI_NP4 

gpl01  960x651 247.2 271.67 572.33 480.30 

isum  1008x756 292.2 259.29 528.55 464.24 

student01  1024x369 149 162.28 289.39 222.03 

gpl03  1280x1033 507.2 413.21 955.15 838.196 

gpl02  1280x1652 800 688.58 412.338 354.466 

student02 2048x1152 885.6 704.19 396.44 327.31 

graduation  8204x3132 9653.8 9078.03 1344 1063.79 

stair  5963x4608 10319.2 8169.36 1380.97 1209.41 

astro  8048x6070 18483.2 13752.8 1833.57 1608.74 

Table 3. Number faces detect 
 

 Dlib OpenCV Facedetector 

mpi_n2 

Facedetector 

mpi_n4 

 Total Faces FD FP FN FD FP FN FD FP FN FD FP FN 

gpl01 4 2 0 2 3 0 1 3 0 1 4 0 0 

gpl02 12 7 0 5 10 1 3 7 0 5 8 0 4 

gpl03 15 2 0 13 6 0 9 13 1 3 11 0 4 

student01 17 17 0 0 17 0 0 16 0 1 11 0 6 

student02 17 17 0 0 17 0 0 16 0 1 15 0 2 

astro 17 17 0 0 21 4 0 17 0 0 17 0 0 

stair 18 18 0 0 26 8 0 18 0 0 14 1 5 

isum 62 10 0 52 23 0 39 60 0 2 60 0 2 

graduation. 148 149 1 0 163 16 1 149 2 1 125 0 23 
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faces, but they are not. To prevent this from 
happening in our implementation, we take 
advantage of the previously designed image 
scaling in order to better identify the characteristics 
of the faces and thus reduce the number of false 
detections. 

Figure 11 clearly shows how the hit rate is 
similar in 5 (student01, student02, astro, stair and 
graduation) of the 9 cases having a hit rate 
between 94 and 100% over the 3 implementations, 
However, Facedetctor_MPI it is superior (gpl01, 
gpl03, isum) about 40 to 60% effective in 3 cases 
and only one (gpl02) shows a 20% reduction 
compared to the other implementations.  

Although the results show certain differences, 
we can see how the added parallelism strategy 
improves performance and exploits existing 
computing resources, without compromising the 
effectiveness of face detection on an HPC cluster. 

6 Conclusions 

The work done in this investigation define several 
important points. Since the study of different 

algorithms for face detection, until to find a better 
solution in the processing of images.  

A limitation that we find to image processing is 
its high consumption in computational resources, 
leaving low-performance teams without the 
possibility of being able to efficiently execute 
this task.  

The tests performed have allowed us to see the 
superiority that exists when using a large image 
since the results improve significantly thanks to the 
implementation of a greater number of OSTs, as 
well as the use of multiple lustre clients and the 
MPI interface. 

Once the parallelization strategy for face 
detection on HPC cluster is made, we can 
conclude that the results are similar or in some 
cases better to the others implementations that do 
not exploit the parallelism to a higher level.  

The reuse existing hardware is presented as a 
less expensive solution compared to the 
acquisition of new equipment and the 
implementation of GPUs. 

Finally, we hope that this work helps to promote 
the use of HPC clusters through the comparison of 
different parallelization strategies 

 

Fig. 11. Hit rate 
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