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Abstract. In the last decade, the development of 

technologies and tools for eye tracking has been a 
constantly growing area. Detecting the center of the pupil 
using image processing techniques has been an 
essential step in this process. A large number of 
techniques have been proposed for pupil center 
detection using both traditional image processing and 
machine learning-based methods. Despite the large 
number of methods proposed, no comparative work on 
their performance was found, using the same images 
and performance metrics. In this work, we aim at 
comparing four of the most frequently cited traditional 
methods for pupil center detection in terms of accuracy, 
robustness, and computational cost. These methods are 
based on the circular Hough transform, ellipse fitting, 
Daugman's integro-differential operator and radial 
symmetry transform. The comparative analysis was 
performed with 800 infrared images from the CASIA-
IrisV3 and CASIA-IrisV4 databases containing various 
types of disturbances. The best performance was 
obtained by the method based on the radial symmetry 
transform with an accuracy and average robustness 
higher than 94%. The shortest processing time, obtained 
with the ellipse fitting method, was 0.06 s. 

Keywords. Pupil detection, radial symmetry, ellipse 

fitting, Hough Daugman. 

1 Introduction 

Eye-tracking or gaze position systems are widely 
used in a large number of applications: medical 

research (psychological, neurophysiological, 
cognitive, ophthalmological) [1–3], rehabilitation 
[4], driver evaluation and fatigue detection [5], 
marketing and  usability studies [6], help for the 
disabled people [7], video games [8] and human-
computer interaction [9], among others.  

Currently, the systems used in humans are 
based on the following non-invasive techniques: 
electro-oculography, which uses pairs of 
electrodes placed around the eye, and video-
oculography, which uses video cameras to capture 
images of the eyes.  

The main drawbacks of electro-oculography are 
its low immunity to disturbances (interferences, 
drifts, and noise) in the acquisition system due to 
the low signal level (50 to 3500 µV) and the high 
cost required guaranteeing the electrical safety of 
the system. 

On the other hand, the video-oculography 
(VOG) has greater mobility and adaptability as it 
uses small, lightweight, reusable, safe, and 
relatively low-cost devices.  

Therefore, in recent years, its use has 
increased. The main challenge of this technique 
focuses on the processing methods that include 
the following steps: (a) face location, (b) eye 
location, (c) center pupil detection, and (d) 
calculation of the gaze direction.  
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The first step depends on the quality and 
assembly of the cameras used, which are usually 
infrared (IR). This imaging modality offers better 
contrast between the iris and the pupil. The most 
widely used VOG systems for medical 
applications, which is the interest of this work, are 
those that use chin rests with a coupled camera 
that focuses on one eye (monocular) or 
both (binoculars).  

The step (a) is not required in this configuration. 
Once the subject is positioned on the chin rest, and 
the camera is focused on his eye, step (b) is 
relatively easy to implement and does not require 
a high precision, because only the eye should be 
framed, so that the pupil is clearly distinguished. 
Step (c) is the most complex and important 
because of its accuracy and precision conditions 
step (d) and the subsequent application made by 
the software of these systems. Therefore, it is the 
great challenge of these systems and is the main 
focus of this paper. 

In recent years, a large number of pupil center 
detection procedures have been proposed using 
both traditional image processing and machine 
learning-based methods. The latter, also called 
appearance-based methods [10], estimate the 
pupil center from features of its appearance when 
the subject looks at a specific point in the scene. It 
requires prior training and therefore a high number 
of images, computational resources and time.  

Furthermore, traditional methods are 
subdivided into two groups: those based on 
characteristics and those based on models.  

Characteristic-based methods estimate the 
pupil center using various image processing 
functions, which segment the edge of the pupil 
according to its characteristics (resolution, 
contrast, color, etc.), and then estimate the center 
of gravity. Another approach is to analyze, through 
a mathematical formulation, the relationship 
between the orientations of the image gradient 
vectors and the position where they intersect most 
frequently (possible center of the pupil). 

Model-based methods estimate the pupil as the 
center of the geometric model that best matches 
the shape of the edge of the pupil. Depending on 
the angular position of the eye, the model can be 
circular or elliptical. These methods do not need 
training and for this reason, they are the ones 
addressed in this work. 

Among all the traditional methods, the most 
cited are those based on the Circular Hough 
Transform [11], the ellipse fitting [12], Daugman's 
integro-differential operator [13] and the Radial 
Symmetry Transform [14]. In a search carried out 
in Google Scholar, they have 8620, 8500, 4175, 
and 750 citations, respectively. 

In [15], a method was proposed that uses the 
Circular Hough Transform in a dataset of 52 IR 
images of the same subject with the gaze oriented 
in all directions. The accuracy metric used was the 
percent relative error (ratio between Euclidean 
distance and pupil diameter) and no metric was 
reported for computational cost.  

Likewise, in [16], a similar method was 
evaluated with 1000 IR images of 12 subjects, with 
variations in lighting, reflections, eyelash 
interference, and blurring. Although the accuracy 
was expressed in %, its definition does not appear. 
Similarly, the processing time was reported without 
further explanation on how it was obtained. 

In [17], a method based on the ellipse fitting was 
proposed after performing the decomposition of 
contours into sinusoidal components of the binary 
image. The evaluation was performed with 53926 
IR images acquired from the right eye during a walk 
with variable lighting conditions. In the dataset, 74 
images with low visibility of the pupil due to 
flickering, saccades, and distortion caused by 
excessive lighting were discarded. Also, 500 
randomly selected IR images from the “CASIA-Iris-
Thousand” database [18] were used.  

The accuracy metric was the modular 
Euclidean distance, expressed in %, and the 
computational cost was the detection time, per 
image, in ms.  

In [19], an ellipse fitting method was applied, 
after the detection of edges using the Canny 
algorithm [20].  

The evaluation was performed with 130,856 IR 
images from the "Labeled Pupils in the Wild" 
database [21]. This dataset contains images from 
subjects of several ethnicities, under variable 
lighting conditions, use of eyeglasses, contact 
lenses, makeup and with different gaze directions. 
The accuracy metric was the ratio defined as the 
percentage detection of correctly detected pupils, 
when the Euclidean distance is less than or equal 
to 5 pixels. The computational cost was expressed 
in terms of the detection time per image, in ms. 
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In 2004, Daugman proposed the integro-
differential operator-based method for detecting 
the contour of the pupil and the iris [22], which 
assumes that the edges of the pupil and the iris are 
circular in shape. It seeks, in a smoothed image by 
a Gaussian filter, the center and radius of a 
bordered circle on which, the integral derivative is 
maximum. In [23], an optimized version was 
evaluated with 756 IR images from the CASIA V1 
database, all with good contrast between the pupil, 
iris, and sclera regions.  

In [24], the integro-differential operator was 
combined with the Hough transform. It was 
evaluated using 756 images from CASIA V1 and 
CASIA V2 databases (the number was not 
specified). In both works, the results were 
presented qualitatively and no metrics were 
reported for accuracy and computational cost. 

In [25], a method based on the radial symmetry 
transform was proposed to identify regions of 
interest with radial symmetry within a scene. In 
[26], this method was applied for pupil detection 
and was evaluated using 1295 IR images captured 
from six volunteers. Of these, 410 are sharp and in 
the rest, there are presences of eyelashes, eyelids, 
eyeglasses, and bright spots. The accuracy metric 
(in %) was obtained by subtracting, from 100, the 
value of the relative percentage error (ratio 
between the Euclidean distance and the radius of 
the pupil). The computational cost was measured 
as the detection time per image, in ms. 

From the previous review, it can be seen that in 
the different proposals, there is no uniformity 
between the image databases, the computational 
resources, and the used evaluation metrics. After 
extensive searching (Google Scholar, IEEE 
Explorer, ScienceDirect, Springer Link, and ACM 
Digital Library), no comparative work was found on 
the performance of methods for pupil center 
detection. Some works compared their proposed 
method with another existing one(s) [26, 27] using 
images that were not acquired or processed under 
equal conditions and whose performance metrics 
were different. 

The goal of this paper is to perform a 
comparative analysis of four of the most cited 
traditional methods for detecting the pupil center, 
using the same images and performance metrics 
for all the methods. This paper is organized 
as follows.  

The "Materials and Methods" section describes 
the images and algorithms that support the 
research. In the “Results and Discussion” section, 
the evaluation methodology is explained and the 
results obtained are analyzed comparatively. 
Finally, the conclusions of the work are exposed. 

2 Materials and Methods 

The pupil location procedure is a complex task, 
since the shape of the object to be segmented is 
not necessarily regular or its limits are not always 
well defined. Generally, an area of interest is 
obtained first to facilitate pupil location and so that 
the algorithms work faster. In this work, it is 
assumed that this step was previously performed, 
so that the focus is on locating the center of the 
pupil. Next, the four methods to be compared 
are described. 

2.1 Circular Hough Transform  

Hough transform was proposed by Paul Hough to 
find curves (lines, polynomials, circles, and others) 
in digitized images. It is based on the projection of 
an N-dimensional image space to another space of 
parameters of dimension M (Hough space), which 
are related through a mathematical model. 

The transform is mainly used in two and three 
dimensions, to find lines, parabolas, centers of 
circles with fixed radius and variables, since for 
larger dimensions, the number of variables, the 
complexity of the algorithm and the computational 
cost increase considerably. 

The Circular Hough Transform (CHT) is a 
particular case when the mathematical model 
between both spaces is represented by the 
function g of a circle expressed as: 

22

0

2

000 )()(),,,,( ryyxxryxyxg jjjj  , (1) 

where (x0,y0) are the coordinates of the center of 
the circle, of radius r. 

In this case, the parameter space is three-
dimensional, that is, it has 3 parameters: two for 
the center of the circle and one for the radius. 

According to the CHT (expression 1), each pixel 
in the image space corresponds to a circle in the 
Hough space and vice versa.  
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All points of the edge of a circle in the image 
space are transformed into several circles with the 
same radius r (Fig. 1a). The intersection of these 

circles determines the center of the circle detected 
in Hough space whose coordinates are (x0,y0). 

The CHT result is stored in an image-size 
matrix called "Accumulator Array" (Figure 1.b). The 
accumulator value is updated (increasing by 1) for 
each circle generated by using the CHT. The 
maximum accumulator value represents the center 
O of the detected circle and is obtained, when all 
the circles generated by the edge pixels vote 
(intersect) at the same point. The pseudocode of 
the algorithm is presented in Table 1. 

Fig. 1b illustrates the procedure for updating the 
values in the accumulator for the instantaneous 
case in which the three edge pixels of the image 
space shown in Figure 1a are analyzed. 

Based on the above, this method involves the 
following steps:  

a. To obtain the image's edge map using an 
edge detector  

b. To explore each pixel in the image. If it is 
labeled as an edge, it will yield a circle of 
radius r centered on itself. Cells belonging to 

the circle receive one vote. 

c. To determine the most voted cell, which will 
correspond to the center of the circle of the 
image space. 

CHT is used to detect the edge of the pupil and 
therefore the radius and its central coordinates in 
the image. To find the circle that best fits the 
contour of the pupil, the CHT algorithm is applied 
for different radius values in a range of radii from 
rmin to rmax that includes the estimated radius of 

the  pupil.  

2.2 Ellipse Fitting 

The Ellipse Fitting (EF) method is based on 
detecting the points located on the pupil contour 
and obtaining the ellipse that best fits these points, 
according to the least-squares criterion.  

Various algorithms implement this method 
depending on the variant used for 
contour detection. 

In this work, the algorithm proposed in [29] is 
implemented, which uses the algorithm presented 
in [30] for the ellipse fitting, since it offers a good 
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Fig. 1. (a) Principle of the Circular Hough Transform, 

(b)  State of the accumulator arrangement after the votes 
of the three points shown in (a) 

Table 1. Pseudocode of the CHT Algorithm 

Stage 1: Pre-processing  

1. Load image 
2. Reduce image dimensions by a factor of 4. 

Stage 2: Detection using CHT 
3. Initialize to 0, the three-dimensional accumulator 
    array of the Hough parameter space.  
4. Detect the edges in the image using Canny's 
    algorithm. 
5. For each pixel in the image: 
      For each radius from rmin= 5 to rmax=25 

If the point is on an edge and it meet that

0),,,,( 00 ryxyxg jj  
Increase by one the elements of the 
accumulator array.

 6. Find the maximum in the accumulator array 
7. Return the circle that corresponds to the maximum 
     value found in the accumulator. 
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tradeoff between speed and precision. The 
algorithm consists of two stages: pre-processing 
and fitting. 

Pre-Processing 

Initially, the IR ocular image (Iinput) is read, which 

represents the input of the algorithm, and a non-
linear transformation is applied to obtain an output 
binary image (Ioutput). For it, the threshold value T = 

25 was used so that: 

Ioutput(x,y) = 1 if Iinput(x,y) >T, 

Ioutput(x,y) = 0 if Iinput(x,y) T, 

 

The morphological closing operation (dilation 
followed by erosion) is then performed to reduce 
the noise effects caused by the eyelashes and 
other undesirable disturbances present in the 
binary image obtained in the previous step. This 
operation tends to smooth the contours of the 
objects, fuses narrow breaks and long thin gulfs, 
eliminates small holes, and fills gaps in the contour 
[31]. The closing operation was implemented with 
a structural element in the form of a disk with 
radio 5. 

Edge detection is then performed using Canny's 
algorithm [20] and, for the edge segments obtained 
from this method, an analysis of connected 
components is implemented in a neighborhood of 
8 pixels. 

At this point, the objective is to detect connected 
components, which will be those neighboring 
regions or areas whose pixels are connected by a 
path or set of pixels of the same value (for 
example, 1) to which the same identification label 
will be assigned. The algorithm will remove the 
shortest connected component chains and store, 
in a two-dimensional matrix, the set of positions (x, 

y) of the pixels belonging to the longest connected 

component  chain. 

The previously saved positions (x, y) will 

constitute the input parameters for the ellipse fitting 
function that is proposed as the second step of the 
method and is explained below. 

Fitting 

The fitting finds the parameters that define an 
ellipse in a sparse data set. The ellipse fitting 
algorithm [30] receives as input data a vector with 
the (x, y) coordinates resulting from the previous 

step. The data is then normalized to position the 
center of the ellipse at the coordinate origin. 

Any conic, in general, can be represented by a 
second-order polynomial like the following: 

0),( 22  feydxcybxyaxxaxaF i
, (2) 

where a = [a b c d e f]T and x = [x2xy y2 x y 1]T,
 

),( ixaF
 

is the so-called "algebraic distance" from one point 
(x, y) to the conic 0),( xaF . 

 
The fitting of a general conic can be addressed 

by minimizing the sum of the square algebraic 
distances of the curve for the N points: 





N

i

ixF(a)D
1

2)(A
. 

(3) 

To avoid the trivial solution a = 0, constraints D 

are applied to vector a. The minimization of 

distances can be resolved considering the 
generalized eigenvalue system: 

CaDaDT  , (4) 

where: 

D = [x1 x2 … xn]T  is the design matrix, 

DTD is the dispersion matrix, 

C is the 6x6 constraint matrix. 

In the specific case of the ellipse, the constraint 

is quadratic in form 14 2 bac  and can be 

expressed in the matrix form 1CaT  as: 
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(5) 

with the above equations and constraints, we 
construct and solve the system, which has 6 pairs 
of eigenvalues and eigenvectors. For more details 
on the mathematical basis, see [30].  

Finally, the fitting function returns the following 
parameters: center of the ellipse, radius, and 
orientation. With this data, it is possible to trace the 
fitted ellipse to the pupil and show its center. 
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The pseudo-code implemented for this method 
is shown in Table 2.  

2.3 Daugman's Integro-Differential Operator 

In 2004, Daugman proposed the Integro-
Differential Operator (IDO) based method for 
detecting the contour of the pupil and the iris [22].  

This method assumes that the edges of the 
pupil and the iris are circular and searches, in an 
image smoothed by a Gaussian filter, the 
parameters (center and radius) of a circular edge 
on which the integral derivative is maximum. 

Mathematically it is described by 
the expression: 






00

00

,,

),,(
2

),(
)(max

yxr

yxr ds
r

yxI

r
rG




, (6) 

where the symbol * denotes convolution, I(x,y) is 

the intensity of the pixel in the coordinates of the 
ocular image, r is the radius of several circular 
regions, with centers in (x0,y0), on which the 

gradient is calculated. G  is a Gaussian smoothing 

function with a spatial scale value and is 
mathematically described by expression 7: 

2
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
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erG












 . (7) 

The full operator behaves like a circular edge 
detector that iteratively searches for the edge that 
maximizes the IDO value within a circle with radius 
and center, which is the integration surface. This 
operator is applied iteratively with the amount of 
smoothing progressively reduced to achieve the 
exact location.  

Figure 2a illustrates the operating principle of 
the Daugman IDO, from the exploration of two 
pixels located in columns [6-14] (fifth row) of the 
image matrix I, which stores a binary image 
composed of a gray circle, radius r3 equal to 3 

pixels, on a white background. 
For convenience in the figure, it will be assumed 

that the pixels that have the gray color (partial or 
total) have an intensity equal to 1, and those that 
appear white, have an intensity equal to 0. In pixels 
with centers in (x06, y05) and (x014, y05), the line 
integral is calculated for each of the radii r1, r2, r3 
and r4, equal to 1, 2, 3 and 4 pixels, respectively, 

and in each case it is divide (normalize) by the 
perimeter of each circle. 

Then the partial derivative concerning the 
radius is calculated from the results obtained 
previously and the modular value is obtained. The 
maximum operator value (1.06 in this case, figure 
2b) corresponds to the radius of the circle sought, 
and the pixel coordinates correspond to the center 
of that circle: (x06, y05) in this case. 

The exploration of the pixel with coordinates 
(x014, y05), belonging to a point in the background of 

the image, does not show variations in the value of 
the integro-differential operator for any radius, so 
the existence of a circle is discarded in this case.  

The upper and lower figure 2b shows the results 
obtained from the calculation of the integral and the 
derivative, respectively, for both example pixels 
and each radius. Notice that for each radius, the 
results are stored in the homologous row, of a 
three-dimensional matrix. 

In order to explain the method easily, in this 
case, the convolution operation with a Gaussian 
filter has not been taken into account, since it is 
used to eliminate the effects of noise in an image 
and it is being considered an ideal image 
without noise. 

Table 2. Pseudocode of the EF Algorithm 

Stage 1: Pre-processing  
1. Read input image 
2. Convert to binary image  
3. Perform closing morphological operation 
4. Detect edges in the image 
5. Save positions (x, y) of the longest connected 

    component chain  

Stage 2: Ellipse Fitting 
6. Read vector of (x, y) 

7. Normalize the data 
8. Build design matrix 
9. Construct dispersion matrix 
10. Construct 6×6 constraint matrix 
11. Solve the generalized eigenvalue system 
12. Obtain the fitting parameters 
13. Pupil detection 
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The implemented algorithm is the one proposed 
in [32] that optimizes the integro-differential 
operator by including a previous pre-processing 
stage whose function is to reduce the number of 
pixels of objects to which the Daugman's operator 
is applied. The algorithm, therefore, consists of two 
stages: pre-processing and detection of the pupil 
center using the IDO, see Table 3.  

In this case, unlike the original proposal, a 
range of radii corresponding to those of the pupil is 
used, and the iris is not detected. 

Pre-Processing 

Initially, the input image is read and its dimensions 
are reduced, employing a subsampling, to 
decrease the computational cost. Since the 
Daugman's operator is very sensitive to light 
reflections in eye images, which affect pupil edge 
detection, a morphological operator is used that 
fills in the light-affected regions with the average 
light intensity pixels of the surrounding region. 
Then the grayscale image is converted to a binary 
image using a threshold of [25].  

This operation is applied after the previous step 
to mark as "object pixels", those that could be the 
central pixels (corresponding to the region of the 
pupil). Therefore, all pixels whose intensity is 
smaller than a threshold are marked, and the 
Daugman's operator applies only to those pixels. 
The image resulting from this transformation is 
then scanned pixel by pixel to determine if the pixel 
being analyzed represents a local minimum in its 
immediate neighborhood of 3×3.  

This means that the intensity of each pixel is 
compared with the intensities of its nine immediate 
neighboring pixels. The pixel with the lowest 
intensity value among these nine neighbors is used 
for other calculations and the rest of the pixels are 
discarded. Reducing the number of pixels in 
objects, in which the Daugman's operator is 
applied, diminishes the number of calculations and 
speeds up the detection process. 

Detection of the pupil center using the integro-
differential operator. To the sub-sampled image, 
from which pixels have been eliminated, the 
integro-differential operator is applied to detect the 
center and radius of the pupil, searching in a radius 
range of 5 to 25 pixels until a maximum is found, 
as explained above. 
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Fig. 2. Daugman's Integro-Differential Operator 

Principle. (a) Two pixels scan of columns 6 and 14 (fifth 
row) of image matrix I for radii equal to 1, 2, 3 and 4 
pixels. (b) Results in row 5 of the integral (upper matrix) 

Table 3. Pseudocode of the IDO Algorithm 

Stage 1: Pre-processing  

1. Read input image  

2. Reduce image dimensions by a factor of 4 

3. Remove light spots 

4. Find local minimum in the neighborhood of a pixel 

5. Discard unrepresentative pixels 

Stage 2: Detection using IDO 

6. Apply Gaussian filter 

7. Initialize pupil center and radius 

8. For each pixel in the image 

    8.1 Construct circle with given center and radius 

    8.2 Calculate integro-differential operator 

    8.3 If the operator is maximum: 

            - Set maximum operator value 

          Else 

            - Change center and radius 

9. Pupil detection 

Computación y Sistemas, Vol. 25, No. 1, 2021, pp. 67–81
doi: 10.13053/CyS-25-1-3385

Pupil Center Detection Approaches: A Comparative Analysis 73

ISSN 2007-9737



2.4 Radial Symmetry Transform 

This method is based on considering all the 
possible circles that a border pixel can be part of. 
Each point on the edge of a circle votes along a 
line of possible radii and these lines intersect at the 
center of the circle, resulting in a peak. The Radial 
Symmetry Transform (RST) was proposed in [25]. 
Figure 3 shows the steps to obtain it. 

The RST is calculated for one or more radii n ∈ 
N, where N is the set of radii of the radially 

symmetrical characteristics to be detected. The 
value of the transform at radius n indicates the 

contribution to the radial symmetry of the gradients 
at a distance n from each point. 

First, the image gradient g is determined, which 

acts as an edge detector. If its value is positive, the 
radial symmetry contribution of each pixel with its 
surrounding pixels is analyzed. If not, the next pixel 
in the image is analyzed. Within neighbors, the 
value of the gradient of pairs of points 
symmetrically located above the central pixel is 
used as evidence of radial symmetry. 

For each radius n, an orientation projection 
image On and a magnitude projection image Mn are 

calculated. These images are generated by 
examining the gradient g in each pixel p from which 
a positively-affected pixel p+ve and a negatively-
affected pixel p-ve are determined, as shown in 

Figure 4. 
The positively-affected pixel is defined as the 

pixel where the gradient vector is pointing at a 
distance n from p, and the negatively-affected pixel 

is defined as the pixel located at the same distance 
n in the opposite direction to where the gradient 

is pointing. 
The coordinates of the positively and negatively 

affected pixels are given by: 

n
g(p)

g(p)
 round p pp ve 













  )(

, 
(8) 

n
g(p)

g(p)
 round p pp ve 













  )(

.

 

(9) 

The "round" function rounds each element of 
the vector to the nearest integer. Orientation and 
magnitude projection images are initialized to zero. 
For each affected pair of pixels, the pixel 
corresponding to p+ve in the orientation projection 

image On and in the magnitude projection image 
Mn increases by 1 and ||g(p)||, respectively, while 
the pixel corresponding to p-ve is reduced by these 

same amounts in each image. The above is 
expressed mathematically as: 

1))(())((   ppOppO venven  , (10) 

1))(())((   ppOppO venven  ,

 

(11) 

)())(())(( pgppMppM venven    ,
 

(12) 

)())(())(( pgppMppM venven    .
 

(13) 

The transform can be adjusted to find only dark 
or light regions of symmetry. To find symmetry 
exclusively in the dark regions (due to the 
characteristics of the pupil), when determining Mn 
and On, only the negatively affected pixels should 

be considered.  

Thus, in the case of our application, the RST 
method is adjusted to implement only equations 
(11-13). 

The radial symmetry contribution for radius n is 

defined by the following convolution: 

Determine 

gradient
I g On

Mn

Fn Sn S
n

 
nn AF  

Calculate 

Fn

Calculate 

Mn and On

Nn For each

 

Fig. 3. Steps to obtain Radial Symmetry Transform  

 

Fig. 4. Definition of positively-affected pixel p+ve and 
negatively-affected pixel p-ve by the gradient element g(p) 
for a radius n = 2. The circle with dashed lines shows all 

the pixels that can be affected by the gradient for a 
radius n 
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where α is the radial strictness parameter, kn is a 
scale factor that normalizes Mn and On to different 
radii, and An is a two-dimensional Gaussian mask. 

The radial strictness parameter α determines 

how strictly radial the symmetry must be for the 
RST to return a high value of interest, that is, it 
defines how radial the symmetry of the object 
must be. 

The value α=2 was chosen, experimentally 

because it is a good tradeoff between rejection of 
non-radial symmetry elements (for example, 
eyelashes), accuracy, and computational cost. The 
normalization factor kn allows to compare (or 

combine) on the same scale, the symmetry images 
calculated for different radii. 

To normalize, On and Mn are divided by their 
maximum values. The complete transformation S is 

defined as the average of the contributions of 
symmetry over the entire set N of radii considered, 

that is: 





Nn

nS
N

S
1

 . 
(16) 

In consequence, to effectively detect the pupil 
center, the RST method leverages its symmetrical 
circular feature and calculates the negatively-
affected pixel for each point on the image. 

Negatively-affected pixels point to the pupil 
center as they are located in the negative direction 
of the gradient, i.e. from a higher gray level (white) 
to a lower gray level (black).  

The final result of the RST is calculated 
according to the two projection images Mn and On 

which, according to the radius, are updated to save 
the contributions of the negatively-affected pixels. 
In the RST process, with the change of the radius 
values, the points of the pupil edge and of the iris 
edge will overlap near the center of the pupil, 
where a maximum value will result. 

The position of the RST maximum value is the 
location of the pupil center. The pseudocode of the 
implemented algorithm is shown in Table 4. 

3 Results and Discussion 

To perform the comparative analysis, 800 IR 
images from the CASIA-IrisV3 and CASIA-IrisV4 
databases [18] were used. They were randomly 
selected: 200 from the CASIA-IrisV3-Lamp, 200 
from the CASIA-IrisV3-Twins, and 400 images 
from the CASIA-IrisV4-Thousand, all in JPG format 
and a resolution of 640 × 480 pixels.  

The CASIA-IrisV3-Lamp subset contains 
images affected by variations in lighting induced by 
a lamp, with consequent cases of pupil contraction 
and dilation.  

The CASIA-IrisV3-Twins subset contains 
images of twins, with noisy elements (interference 
of eyelashes, hair, and eyelids).  

The CASIA-IrisV3-Thousand subset contains 
good quality images of subjects with glasses and 
specular reflections. The evaluation of the 
implemented methods was performed on a 
computer equipped with 3.1 GHz Intel Core I5 
4670S microprocessor, 4 GB of DDR3 RAM, and 
Windows 7 Professional operating system for 64-
bit architecture. 

Detection algorithms were applied to all 
images. The evaluation procedure covers the 
following steps: 

Table 4. Pseudocode of the RST Algorithm 

Stage 1: Pre-processing  
1. Read input image  
2. Sub-sample the image by a factor of 4 

Stage 2: Detection using RST 
3. Calculate image gradient 
4. Initialize set of detection radii (Nmin= 5, Nmax= 25) 

5. For each pixel in the image 
6. For n = Nmin:1: Nmax 

 Calculate p-ve coordinates 

 Calculate On(p-ve(p)) and Mn(p-ve(p)) 

 Calculate Fn(p) according to equation 15 

 Calculate the RST result by equation 14 in the 
detection radius n, where the variance is chosen 

 = 0.1n and the size of the Gauss window is 

𝑐𝑒𝑖𝑙 (
𝑛

2
) × 𝑐𝑒𝑖𝑙 (

𝑛

2
)

∗
 

7. Calculate S by equation 16 
8. Find in S the coordinates of the maximum value Smax  

    that correspond to the location of the pupil  
   center 
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  Analysis of accuracy, 

 Analysis of robustness, 

 Analysis of computational cost. 

Accuracy Analysis 

For the total set of images, the hit rate is 
defined as: 

%100
i

c

hits
T

P
T  , (17) 

where Pc is the total of the pupils detected correctly 
and Ti is the total of images. 

For all the evaluated images, a specialist 
annotated the geometric center of the pupil using 
the PUPILA2.EXE tool [33] developed in our group. 
This tool contains several options for manual and 
semi-automatic annotation, which makes the 
labeling process more user friendly. 

The annotated coordinates constitute the 
reference value. A correct pupil detection is 
considered if the error (e) between the estimated 

center and the annotated center is less than or 
equal to 25% of the Euclidean distance (d) 

between these centers, divided by the radius of the 
pupil R, what which is expressed mathematically by 

the following expression: 

%100
25,0


R

d
e  . (18) 

The 25 % criterion was empirically determined, 
based on a previous analysis of the 800 
experimental images. 

Since this metric is relational, it is more 
appropriate than considering that the Euclidean 
distance is less than 5 or 6 pixels [14, 26]. 

In addition, this metric considers the dilation 
and contraction of the pupil and it is more invariant 
to scale when the distance at which the eye image 
is captured is not the same. 

Table 5 shows the results of the hit rate for each 
subset of the CASIA database after applying the 
algorithms described in the previous section.  

The method that showed the best performance, 
in terms of accuracy, was the Radial Symmetry 
Transform with a global hit rate for all images of 
94.62%, followed by the methods of the Integro-
Differential Operator, the Circular Hough 
Transform and the Ellipse Fitting with hit rates of 
86.87%, 77% and 64.25%, respectively. 

Robustness Analysis 

The robustness of each method is quantified by 
analyzing the behavior of its hit rate in images with 
and without disturbances.  

For this, the 800 images of CASIA were 
subdivided into: 473 clear images, 136 images 

Table 5. Hit rate for the three subgroups of the CASIA 

database (EF: Ellipse Fitting, CHT: Circular Hough 
Transform, IDO: Integro-Differential Operator, RST: 
Radial Symmetry Transform) 

Subset/ 
Algorithm 

EF CHT IDO RST 

CASIA-IrisV4 
Thousand 

242/ 
400 

331/ 
400 

387/ 
400 

394/ 
400 

CASIA-Iris V3 
Twins 

146/ 
200 

143/ 
200 

128/ 
200 

175/ 
200 

CASIA-Iris V3 
Lamp 

129/ 
200 

142/ 
200 

180/ 
200 

188/ 
200 

Global hit rate    
(%) 

64.25 77.00 86.87 94.62 

Table 6. Hit rate for the different experiments for 

robustness analysis using the database (EF: Ellipse 
Fitting, CHT: Circular Hough Transform, IDO: Integro-

Differential Operator, RST: Radial Symmetry 
Transform) 

Algorithm/   
Experiment 

EF 
(%) 

CHT 
(%) 

IDO 
(%) 

RST 
(%) 

Clear images 76.53 87.31 91.54 97.46 

Images 
influenced by 

hair and 
eyelashes 

58.08 65.44 72.05 86.76 

Images 
influenced by the 

eyelid 
51.64 47.25 75.82 95.60 

Images 
influenced by 
glasses and 
reflections 

26 68 92 97 

Average   
robustness (%) 

53.06 67 82.85 94.45 

Computación y Sistemas, Vol. 25, No. 1, 2021, pp. 67–81
doi: 10.13053/CyS-25-1-3385

Talía Vázquez Romaguera, Liset Vázquez Romaguera, David Castro Piñol, Carlos Román Vázquez Seisdedos76

ISSN 2007-9737



influenced by hair and eyelashes, 91 images 
influenced by the eyelid, and 100 images 
influenced by eyeglasses and reflections. 

Table 6 shows the results of applying the 
methods to each of the experimental subsets and 
it is observed that the algorithm based on the RST 
presented the highest hit rate. The hit rate 
decreased considerably in the presence of images 
with interference of hair and eyelashes over 
the eye. 

Similarly, the RST also reached the highest 
robustness (94.45%), followed by the IDO, CHT, 
and EF methods with hit rates of 82.85%, 67%, and 
53.06%, respectively. Figure 5 shows the result of 
the pupil location for image S2050L02.jpg of the 
subset of clear images. 

Figure 6 shows the results of the algorithms for 
ocular images influenced by the presence of hair 
and eyelashes close to the region of interest 
(pupil). An incorrect detection was obtained when 
using the integro-differential operator.  

In the third experiment, corresponding to pupil 
detection in images influenced by the eyelid and 
the semi-occluded eye, the hit rate of the 
algorithms decreased considerably, especially for 
the CHT-based method. The detections made by 
the Ellipse-Fitting and Circular Hough Transform 
methods in Figure 7 (a) and (b) are 
considered erroneous. 

Finally, the subset of images influenced by 
glasses and reflections was processed. Figure 8 
shows the results of the algorithms for image 
S5020L08.jpg from the CASIA-Iris-
Thousand  database. 

Computational Cost Analysis  

The computational cost was estimated through the 
calculation of the execution time measured when 
processing the same image by each algorithm.  

For this, the MATLAB 2018 “tic-toc” function 
was used, which returns this time in seconds. This 
metric provides valuable information when it is 
desired to implement a VOG system in real time. 

Figure 9 shows the execution times for the four 
compared algorithms. We can appreciate that EF 
and CHT are the most efficient methods with less 
than 0.1 seconds each one. This information about 
the processing latency should be taken into 
account when applying a VOG system in practice. 

General Discussion 

From the analysis of Table 6, it is observed that the 
level of robustness is maintained in most of the 

  

(a) (b) 
  

  

(c) (d) 

Fig. 5. Correct detection of the pupil center in the image 

S2050L02.jpg of the experiment with clear images: 

(a) Ellipse Fitting, (b) Circular Hough Transform, 

(c) Integro-differential Operator, (d) Radial Symmetry 
Transform 

  

(a) (b) 

  

(c) (d) 

Fig. 6. Detection of the pupil in the image 

S3191R01.jpg of the subset of ocular images 
influenced by hair and eyelashes. (a) Ellipse Fitting, 
(b) Circular Hough Transform, (c) Integro-Differential 
Operator, (d) Radial Symmetry Transform 
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experiments in the following order (from highest to 
lowest): RST, IDO, CHT and EF, with the only 
exception that the EF was slightly higher than the 
CHT in images influenced by the eyelid, where the 
CHT showed its worst robustness. This last issue 
could be attributed to the fact that when the 
occlusion of the eye tends to increase, the EF, due 
to its foundation, requires fewer edge pixels (to 
estimate the pupil center within a certain error) 
than the CHT would require. 

In general, the main problem with CHT is that 
the pupil is not a perfect circle and its shape and 
radius depend on different factors, such as the 
position of the pupil, lighting, corneal reflection, the 
presence of hair, and eyelashes, among others. 

The EF showed very low robustness in the 
presence of glasses and reflections. This is 
because the use of thresholds causes the 
performance to vary depending on the 
characteristics of the image, sometimes being low. 
For example, in the case of eyeglasses with dark 
frame, thresholding may cause the longest 
connected component that the method seeks to be 
located on the frame and not on the pupil region. 
In general, the ellipse fitting method showed errors 
in images with low contrast and extreme variations 
in illumination. 

Daugman's IDO presented the greatest 
difficulties in images influenced by hair, eyelashes 
and eyelid as these elements impair the circular 
contour of the pupil, affecting the value of the line 
integral in that contour and consequently the 
estimation of the center of the pupil. Failures were 
also registered when the contrast between the iris 
and the pupil is very low, which does not facilitate 
the correct segmentation of the pupil.  

The RST algorithm proved to be robust in 
images where eyeglasses, high density of 
eyelashes, or flashes of light appear. Since the 
eyelashes and the frame of the glasses do not 
have radial symmetry, no matter how the detection 
radius changes, their results will not contribute to 
the detection of the center of the pupil. Similarly, 
since the light flares have a high gray level value 
(close to 255, white), the negative direction of the 
gradient at the points of the edge of the light flare 
deviates from the center of the circle, and will not 
represent a contribution to the results of the RST.  

Therefore, the light spot will also not affect the 
detection of the center of the pupil.  

Through experimental results, it was identified 
that the RST algorithm presents difficulty in 
processing images highly influenced by the eyelid, 
hair, and eyelashes.  

  

(a) (b) 

  

(c) (d) 

Fig. 7. Detection of the pupil in the image 

S5559L00.jpg where the area of the pupil is partially 
covered. (a) Ellipse Fitting, (b) Circular Hough 
Transform, (c) Integro-Differential Operator, 
(d) Radial Symmetry Transform 

  

(a) (b) 

  

(c) (d) 

Fig. 8. Pupil detection in the image S5020L08.jpg 

where the subject wears glasses, (a) Ellipse fitting, 
(b)  Circular Hough Transform, (c) Integro-Differential 
Operator, (d) Radial Symmetry Transform 
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This result was expected considering that this 
occlusion in the pupil area destroys its circular 
character, which also affects the rest of the 
analyzed methods. In these cases, other 
alternative prediction methods should 
be investigated. 

All methods achieve their best performance 
with clear images. Even though the RST and IDO 
had the best performance in accuracy and 
robustness, their processing times were relatively 
high as compared to CHT and EF. 

4 Conclusions 

This work presented a quantitative and qualitative 
comparison on the performance of four of the most 
cited methods for pupil center estimation.  

Up to the best of our knowledge, no 
comparative works have been presented on this 
topic using equal conditions. Therefore, the novelty 
of this study lies in that it constitutes a first 
approximation in which the performance of the 
methods was assessed under equal conditions. 
This means using the same images, which are 
representative of real scenarios, the same 
computational resources, and the same 
performance metrics. 

The best performance in terms of accuracy and 
robustness was obtained by the method based on 
the radial symmetry transform, while the shortest 
processing time was achieved by the ellipse fitting 
method. This result suggest the use of one of these 
methods depending on the application. Although 
RST obtained the longest processing time, it can 

be implemented with reasonable resources taking 
into account current computing technologies. 

Future works should be focused on the 
implementation of this method in an efficient 
language as well as its optimization. 
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