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Abstract—Diabetes is a highly prevalent chronic disease
worldwide. Analysis of human breath has emerged as a
non-invasive method for detecting various conditions using
biomarkers. Electronic noses represent a crucial tool in this
breath analysis for patients with diabetes mellitus, enabling early
detection and diagnosis. This study involves the evaluation of 22
healthy patients and 20 patients with diabetes mellitus using an
electronic nose employing catalytic Metal-Oxide-Semiconductor
(MOS) gas sensors. A computational algorithm based on Singular
Value Decomposition (SVD) for feature extraction and selection
was utilized, coupled with classification using the Extreme
Gradient Boosting (XGBoost) algorithm. The results demonstrate
that classification of singular value vectors with the XGBoost
algorithm achieves an accuracy of 95.24identifying healthy and
diabetic patients. This approach shows significant potential for
early diagnosis of diabetes through breath analysis, highlighting
the effectiveness of electronic nose technology alongside advanced
computational techniques in distinguishing between patient
groups.

Index Terms—Diabetes mellitus, electronic nose, breath
analysis, XGBoost.

I. INTRODUCTION

Diabetes is characterized by insufficient insulin production,
which leads to imbalances in blood glucose levels (BGL)
and triggers cardiovascular complications, eye problems, and
limb issues, including amputations [1]. Although glucometers
offer high precision, their invasive method is painful
and uncomfortable, especially for frequent measurements
throughout the day [2]. Recent clinical research has
highlighted the potential of human breath analysis in medical
diagnosis [3].

Exhaled volatile organic compounds (VOCs) contain
endogenous biomarkers that differentiate healthy individuals
from the sick. Figure 1 illustrates the compounds present in
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exhaled breath. In the case of diabetes, cellular inability to
absorb glucose leads to an abnormal increase in ketone bodies,
including acetone, a volatile compound exhaled by the body.
Consequently, diabetic patients exhibit elevated concentrations
of acetone in their breath [4, 5].

Complex techniques such as gas chromatography-mass
spectrometry, mass spectrometry with selected ion flow
tube, and cavity ring-down spectroscopy have demonstrated
precision in breath analysis but are inadequate for clinical
applications due to their lack of portability, complexity, and
high costs [6, 7, 8]. In contrast, electronic noses have overcome
these limitations, emerging as a promising alternative by
providing substantial data on acetone concentrations in breath,
a key biomarker [9, 10, 11].

The development of algorithms trained to detect diabetes
based on feature selection and extraction is crucial, as
demonstrated in previous studies using Principal Component
Analysis (PCA), achieving accuracy greater than 90% in
breath sample analysis [12, 13]. Regression models have
helped predict glucose levels from breath samples [14]. For
qualitative detection between healthy and diabetic patients,
support vector machines (SVM), k-nearest neighbors (KNN),
and various neural network variations have been explored,
achieving 98% accuracy using convolutional neural networks
(CNN) combined with SVM [13, 15, 16]. Previous clinical
studies using deep neural networks (DNN) achieved 96.29%
accuracy in detecting different levels of diabetes [17]. On
the other hand, decision tree-based algorithms like XGBoost
achieved 99 % accuracy in artificial breath analysis [18].

This research focuses on classifying breath samples
from healthy patients and those with type 1 (T1DM) and
type 2 diabetes (T2DM) using an electronic nose with
MOS gas catalytic sensors, employing feature extraction
and selection to differentiate acetone concentrations. The
effectiveness of classification with advanced algorithms
like XGBoost for feature extraction with Singular Value
Decomposition (SVD) is demonstrated, providing reliable
results in breath differentiation between healthy and diabetic
patients, thus supporting the efficacy of electronic noses for
medical diagnosis.
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Fig. 1. Components in human breath when inhaling and exhaling

TABLE I
MATRIX OF SENSORS IN ELECTRONICNOSE

Number Sensor Measurement
1 MQ-2 Carbon monoxide
2 MQ-3 Alcohol
3 MQ-7 Carbon monoxide
4 MQ-135 Ketones
5 MQ-138 Acetone
6 DTH-22 Temperature and humidity
7 Mics-5521 VOCs

II. EXHALED BREATH ANALYSIS PROCEDURE

The electronic nose is composed of MQ series MOS sensors
capable of identifying carbon monoxide, alcohol, acetone,
ketones, VOCs, temperature, and relative humidity. The MOS
sensors were previously calibrated, as they require preheating
for at least 24 to 48 hours in advance. An Arduino Nano
33 BLE Sense board was incorporated due to its 12-bit
ADC sampling rate with a 32-bit ARM Cortex-M4 processor.
In addition to measuring the acetone biomarker in diabetes
patients, gas sensors detecting other VOCs present in the
breath of healthy patients were added. Table I provides a
detailed matrix of sensors.

The dataset consisted of real measurements from 22 healthy
patients and 20 patients with T1DM and T2DM, considering
variability in ages, sampling times, and blood glucose levels.
Table II shows the physical information of the patients
included in this study.

In Figure 2, the procedure for collecting exhaled breath from
the patients is depicted. A direct method of breath collection
was employed using Tedlar medical bags to store the exhaled
breath. Upon collecting the patient sample, it was manually
transferred to the sample chamber in the electronic nose [13].
Figure 3 shows the breath collection of a patient with type 2
diabetes mellitus, the same procedure that was applied to the
patients who participated in the present study. Measurements
were initiated by connecting to the serial port and coding with
Python for 90 seconds, generating 10,000 samples within that

Fig. 2. Electronic nose application for the detection of diabetes mellitus

Fig. 3. Breath sample collection from patient with T2DM

time frame. These measurements were stored along with the
response information from each sensor in comma-separated
values (CSV) files for subsequent analysis of the VOCs.

A. Signal preprocessing

Due to the noise present in the measurements caused
by changes in the temperature and humidity of the breath
[13], the Discrete Wavelet Transform (DWT) with a low-pass
filter was applied to eliminate noise from the acquired
signals. Subsequently, the measurements of each patient were
normalized (standardized) to reduce variability in the samples
and minimum values in parts per million (ppm) of the readings.

100POLIBITS, vol. 66(2), 2024, pp. 99–104 https://doi.org/10.17562/PB-66(2)-4

Alberto Gudiño-Ochoa, J. A. García-Rodríguez, Raquel Ochoa-Ornelas, Jorge Ivan Cuevas-Chávez, Daniel Alejandro Sanchez-Arias
IS

S
N

 2395-8618



TABLE II
COMPARISON BETWEEN HEALTHY PATIENTS AND PATIENTS WITH DIABETES MELLITUS.

Variable HealthyPatients (22) PatientswithDiabetes (20)
Age (years) 23.64±2.19 29.95±4.24
Height (m) 1.72±0.12 1.69±0.12
Weight (kg) 72.16±10.38 76.80±11.42

BMI (kg/m2) 24.47±4.02 27.33±6.20
Gender (M/f)5 13/9 9/11

Type of Diabetes (T1DM/T2DM) - 6/14
Minimum and maximum Glucose Level (mg/dL) 80.59/94.63 199.28/303.10

Fig. 4. Response of MOS sensor signals between a healthy patient and a
patient with T2DM

This was done by establishing the Rs/Ro value in response to
the MQ sensors, ensuring that no attribute is too dominant
over others [17]. Figure 4 shows the relationship of the Rs/Ro
values of the MQ-135 and MQ-138 sensors in response to the
exhaled breath of a healthy patient and a patient with diabetes,
where a lower Rs/Ro value indicates a higher concentration in
ppm [16].

B. Feature extraction: SVD

After standardizing the response information of each sensor
per patient, the characteristics of the data are selected and
extracted using SVD. This technique in linear algebra breaks
down a matrix A into three main components:

1) Matrix of left singular vectors U,
2) Diagonal matrix S containing the singular values,
3) Matrix of transposed right singular vectors V T.
The mathematical expression of the SVD decomposition for

an m×n matrix A is defined as:

PrecisionA = UΣV T , (1)

where:
– U is an m×m orthogonal matrix whose columns are the

left singular vectors of A.
– Σ is an m×n diagonal matrix containing the singular

values of A.
– V T is the matrix transpose of an n × n orthogonal matrix

whose columns are the right singular vectors of A.
The singular values of A represented by σi are found

on the diagonal of Σ, ordered from largest to smallest,

Fig. 5. Contribution of singular values according to the number of components

being indicators of the importance of each singular vector in
the reconstruction of the original matrix A. The number of
singular values determines the effective dimension to reduce
the dimensionality of A.

Figure 5 displays the information provided by each singular
value, where the first 4 components reach 99.33% of the
information, allowing the implementation of a classification
model. To obtain the dimensionality reduction, the reduced
matrix Ak was obtained by retaining only the k most important
singular values, resulting in a k-rank approximation of matrix
A:

Ak = UkΣkV
T
k , (2)

where Uk, Σk and V T
k are the reduced matrices with the k

most important singular values. The following equations are
used to calculate U , Σ and V T

k :
– U is obtained from the eigenvectors of AAT ,
– Σ is formed by the singular values σi on the diagonal,
– V T is obtained from the ATA eigenvectors.
Figure 6 plots the set of values obtained using the reduced

matrix method with SVD. Distinct clusters are identified
between the groups of healthy patients and those with diabetes
mellitus. In addition, a second data set was generated using
the left singular vector method as shown in Figure 7.
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Fig. 6. Reduced matrix feature extraction using SVD

Fig. 7. Feature extraction with singular vectors on the left with SVD

These results demonstrate the feasibility of both
feature extraction and feature selection techniques for a
gradient-boosting-based model. This makes possible the
construction of a sequence of predictive models.

C. Anomaly detection with One-Class SVM

Anomaly detection using One-Class SVM was applied to
identify unusual patterns in the data that could influence
classification. This technique models the common breath
characteristics of healthy individuals, allowing detection of
significant deviations that could indicate chemical differences
associated with diabetes. Data were stored and labeled to
determine the individual’s health status. Figure 8 shows
clusters among the normal values, suggesting that the data
set is appropriate for classification.

Fig. 8. Anomaly detection with One-Class SVM on data extracted with SVD

Fig. 9. DBSCAN classification of values extracted with SVD

III. CLASSIFICATION RESULTS

A. Unsupervised learning: DBSCAN

In the analysis prior to the machine learning classification
stage, a validation of the data was performed using an
unsupervised clustering technique (DBSCAN). This allowed
clusters in the data sets to be identified based on the density of
the points. The parameters of the unsupervised classifier were
set to an epsilon (ϵ) value of 0.2 and a minimum number of
center points of 1 (MinPts), which resulted in the identification
of patients with diabetes, as evidenced by the yellow-greenish
hues in Figure 9, based on their elevated NGL levels.

To address the distinction between healthy patients and
those with diabetes mellitus, we divided the data set into two
equal parts: 50% for model training and the remaining 50%
for the test set. Given the sample size limitation of healthy
patients and patients with diabetes mellitus, the percentage was
adequate to avoid the problem of overfitting. The XGBoost
model was configured as a binary “logistic” type classification,
integrating the “log-loss” evaluation metric together with
lambda and alpha regularizers to avoid overfitting during the
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Fig. 10. DBSCAN classification of values extracted with SVD

Fig. 11. Comparison of evaluation metrics between SVD sets integrated to
the XGBoost model

training. We chose 300 iterations (same number of trees) for
the model’s training.

Figure 10 presents the evaluation of losses in both the
training and test sets over time using the data obtained from
the left-hand singular vector SVD set. Despite achieving
a classification accuracy of 95.24%, the loss assessment
indicates that a larger sample size could enhance the model’s
accuracy using test data from both healthy and diabetic
patients. We then compared two sets: set 1, which represented
features extracted by reduced matrix SVD, and set 2, which
represented features extracted by left singular vector SVD.
Figure 11 shows scoring and evaluation metrics that reveal a
significant improvement in classification accuracy, precision,
and F-1 score, improving from 90.47% to 95.24%.

B. Classification with XGBoost

The XGBoost algorithm confirms the effectiveness of
the SVD extraction method using singular vectors for
classification. In addition, the confusion matrix in Figure 12
reveals a single false positive in the classification between 11
healthy patients and 10 patients with diabetes. A ROC plot
in Figure 13 with an area under the curve (AUC) of 0.9545
complements this finding, confirming the robustness of the
model to distinguish between both patient groups.

We suggest that enhancing the classification process with
XGBoost, which extracts features from human breath analysis

Fig. 12. Confusion matrix of the SVD-XGBoost model

Fig. 13. Fig. 13. ROC Curve.

and VOCs to identify patients with diabetes mellitus, could
boost the accuracy to 95.24% by increasing the number of
patient tests and their NGL variability.

IV. CONCLUSION

The study has demonstrated the XGBoost algorithm’s
effectiveness in the classification of features extracted and
selected by SVD in human breath analysis to identify diabetes
mellitus. The SVD extraction technique, especially through
singular vectors, has been highlighted as a reliable tool for
this classification. We can detect abnormalities in the breath
of diabetic patients by training the XGBoost model with data
from healthy individuals and setting a cutoff for ”normal”.
Increasing the number of tests and the variability of NGL
between patients can improve this non-invasive and effective
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diagnosis method. These results provide a noninvasive tool
for analyzing exhaled human breath and detecting diabetes
mellitus. Medical treatment will depend on the type of diabetes
and NGL concentration, as well as other types of clinical
tests for diagnosis and habits that improve the patient’s
quality of life.
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